55 research outputs found

    On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles

    Get PDF
    Based on energy principles, we propose a statistical model to describe the bubble size probability density function of the daughter bubbles resulting from the shattering of a mother bubble of size D0 immersed in a fully developed turbulent water flow. The model shows that the bubble size p.d.f. depends not only on D0, but also on the value of the dissipation rate of turbulent kinetic energy of the underlying turbulence of the water, [epsilon]. The phenomenological model is simple, yet it predicts detailed experimental measurements of the transient bubble size p.d.f.s performed over a range of bubble sizes and dissipation rates [epsilon] in a very consistent manner. The agreement between the model and the experiments is particularly good for low and moderate bubble turbulent Weber numbers, Wet = [rho][Delta]u2(D0)D0/[sigma] where the assumption of the binary breakup is shown to be consistent with the experimental observations. At larger values of Wet, it was found that the most probable number of daughter bubbles increases and the assumption of tertiary breakup is shown to lead to a better fit of the experimental measurements

    On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency

    Full text link
    The transient evolution of the bubble-size probability density functions resulting from the breakup of an air bubble injected into a fully developed turbulent water ow has been measured experimentally using phase Doppler particle sizing (PDPA) and image processing techniques. These measurements were used to determine the breakup frequency of the bubbles as a function of their size and of the critical diameter Dc defined as Dc = 1.26 ([sigma]/[rho])3/5[epsilon][minus sign]2/5, where [epsilon] is the rate of dissipation per unit mass and per unit time of the underlying turbulence. A phenomenological model is proposed showing the existence of two distinct bubble size regimes. For bubbles of sizes comparable to Dc, the breakup frequency is shown to increase as ([sigma]/[rho])[minus sign]2/5[epsilon][minus sign]3/5 [surd radical]D/Dc[minus sign]1, while for large bubbles whose sizes are greater than 1.63Dc, it decreases with the bubble size as [epsilon]1/3D[minus sign]2/3. The model is shown to be in good agreement with measurements performed over a wide range of bubble sizes and turbulence intensitie

    In situ Raman characterization of minerals and degradation processes in a variety of cultural and geological heritage sites

    Get PDF
    Wetest the capabilities of in situ Raman spectroscopy for non-destructive analysis of degradation processes in invaluable masterpieces, as well as for the characterization of minerals and prehistoric rock-art in caves. To this end, we have studied the mechanism of decay suffered by the 15th-century limestone sculptures that decorate the retro-choir of Burgos Cathedral (N Spain). In situ Raman probe detected hydrated sulfate and nitrateminerals on the sculptures, which are responsible for the decay of the original limestone. In addition, in situ Raman analyses were performed on unique speleothems in El Soplao Cave (Cantabria, N Spain) and in the Gruta de las Maravillas (Aracena, SWSpain). Unusual cavemineralswere detected in El Soplao Cave, such as hydromagnesite (Mg5(CO3)4(OH)2·4H2O), as well as ferromanganese oxides in the black biogenic speleothems recently discovered in this cavern. In the Gruta de las Maravillas, gypsum (CaSO4·2H2O) was identified for the first time, as part of the oldest cave materials, so providing additional evidence of hypogenic mechanisms that occurred in this cave during earlier stages of its formation. Finally, we present preliminary analyses of several cave paintings in the renowned “Polychrome Hall” of Altamira Cave (Cantabria, N. Spain). Hematite (Fe2O3) is the most abundant mineral phase, which provides the characteristic ochre-reddish color to the Altamira bison and deer paintings. Thus, portable Raman spectroscopy is demonstrated to be an analytical technique compatible with preserving our cultural and natural heritage, since the analysis does not require physical contact between the Raman head and the analyzed items

    Prevalence of anxiety in medical students during the covid-19 pandemic: A rapid systematic review with meta-analysis

    Get PDF
    The novel coronavirus disease (COVID-19) pandemic has brought a great deal of pressure for medical students, who typically show elevated anxiety rates. Our aim is to investigate the prevalence of anxiety in medical students during this pandemic. This systematic review and mini meta-analysis has been conducted following the PRISMA guidelines. Two researchers independently searched PubMed on 26 August 2020 for cross-sectional studies on medical students during the COVID-19 outbreak, with no language restrictions applied. We then performed a manual search to detect other potentially eligible investigations. To the 1361 records retrieved in the initial search, 4 more were added by manual search on medRxiv. Finally, eight studies were finally included for qualitative and quantitative analysis, which yielded an estimated prevalence of anxiety of 28% (95% CI: 22–34%), with significant heterogeneity between studies. The prevalence of anxiety in medical students is similar to that prior to the pandemic but correlates with several specific COVID-related stressors. While some preventive and risk factors have been previously identified in a non-pandemic context, knowledge and cognitions on COVID-19 transmission, treatment, prognosis and prevention negatively correlate with anxiety, emerging as a key preventive factor that may provide a rationale for why the levels of anxiety have remained stable in medical students during the pandemic while increasing in their non-medical peers and the general population. Other reasons for the invariability of anxiety rates in this population are discussed. A major limitation of our review is that Chinese students comprised 89% the total sample, which could compromise the external validity of our work

    Prevalence of anxiety in the COVID-19 pandemic: An updated meta-analysis of community-based studies

    Get PDF
    Background: The unprecedented worldwide crisis caused by the rapid spread of COVID-19 and the restrictive public health measures enforced by some countries to slow down its transmission have severely threatened the physical and mental wellbeing of communities globally. Methods: We conducted a systematic review and meta-analysis to determine the prevalence of anxiety in the general population during the COVID-19 pandemic. Two researchers independently searched for cross-sectional community-based studies published between December 1, 2019 and August 23, 2020, using PubMed, WoS, Embase, and other sources (e.g., grey literature, manual search). Results: Of 3049 records retrieved, 43 studies were included. These studies yielded an estimated overall prevalence of anxiety of 25%, which varied significantly across the different tools used to measure anxiety. Consistently reported risk factors for the development of anxiety included initial or peak phase of the outbreak, female sex, younger age, marriage, social isolation, unemployment and student status, financial hardship, low educational level, insufficient knowledge of COVID-19, epidemiological or clinical risk of disease and some lifestyle and personality variables. Conclusions: As the overall global prevalence of anxiety disorders is estimated to be 7.3% normally, our results suggest that rates of anxiety in the general population could be more than 3 times higher during the COVID-19 pandemic. These findings suggest a substantial impact on mental health that should be targeted by individual and population-level strategies

    SHALOS: Statistical Herschel-ATLAS lensed objects selection

    Get PDF
    Context. The statistical analysis of large sample of strong lensing events can be a powerful tool to extract astrophysical or cosmological valuable information. Their selection using submillimetre galaxies has been demonstrated to be very effective with more than ∼200 proposed candidates in the case of Herschel-ATLAS data and several tens in the case of the South Pole Telescope. However, the number of confirmed events is still relatively low, i.e. a few tens, mostly because of the lengthy observational validation process on individual events. Aims. In this work we propose a new methodology with a statistical selection approach to increase by a factor of ∼5 the number of such events within the Herschel-ATLAS data set. Although the methodology can be applied to address several selection problems, it has particular benefits in the case of the identification of strongly lensed galaxies: objectivity, minimal initial constrains in the main parameter space, and preservation of statistical properties. Methods. The proposed methodology is based on the Bhattacharyya distance as a measure of the similarity between probability distributions of properties of two different cross-matched galaxies. The particular implementation for the aim of this work is called SHALOS and it combines the information of four different properties of the pair of galaxies: angular separation, luminosity percentile, redshift, and the ratio of the optical to the submillimetre flux densities. Results. The SHALOS method provides a ranked list of strongly lensed galaxies. The number of candidates within ∼340 deg2 of the Herschel-ATLAS surveyed area for the final associated probability, Ptot > 0.7, is 447 and they have an estimated mean amplification factor of 3.12 for a halo with a typical cluster mass. Additional statistical properties of the SHALOS candidates, as the correlation function or the source number counts, are in agreement with previous results indicating the statistical lensing nature of the selected sampleJGN acknowledges financial from the Spanish MINECO for a “Ramon y Cajal” fellowship (RYC2013-13256). DH, FA, and LT acknowledge financial support from the I+D 2015 project AYA2015-64508-P (MINECO, FEDER)

    European Strategy for Particle Physics -- Accelerator R&D Roadmap

    Get PDF
    The 2020 update of the European Strategy for Particle Physics emphasised the importance of an intensified and well-coordinated programme of accelerator R&D, supporting the design and delivery of future particle accelerators in a timely, affordable and sustainable way. This report sets out a roadmap for European accelerator R&D for the next five to ten years, covering five topical areas identified in the Strategy update. The R&D objectives include: improvement of the performance and cost-performance of magnet and radio-frequency acceleration systems; investigations of the potential of laser / plasma acceleration and energy-recovery linac techniques; and development of new concepts for muon beams and muon colliders. The goal of the roadmap is to document the collective view of the field on the next steps for the R&D programme, and to provide the evidence base to support subsequent decisions on prioritisation, resourcing and implementation.Comment: 270 pages, 58 figures. Editor: N. Mounet. LDG chair: D. Newbold. Panel chairs: P. V\'edrine (HFM), S. Bousson (RF), R. Assmann (plasma), D. Schulte (muon), M. Klein (ERL). Panel editors: B. Baudouy (HFM), L. Bottura (HFM), S. Bousson (RF), G. Burt (RF), R. Assmann (plasma), E. Gschwendtner (plasma), R. Ischebeck (plasma), C. Rogers (muon), D. Schulte (muon), M. Klein (ERL
    corecore