522 research outputs found

    Thermodynamic versus Topological Phase Transitions: Cusp in the Kert\'esz Line

    Full text link
    We present a study of phase transitions of the Curie--Weiss Potts model at (inverse) temperature β\beta, in presence of an external field hh. Both thermodynamic and topological aspects of these transitions are considered. For the first aspect we complement previous results and give an explicit equation of the thermodynamic transition line in the β\beta--hh plane as well as the magnitude of the jump of the magnetization (for q3)q \geqslant 3). The signature of the latter aspect is characterized here by the presence or not of a giant component in the clusters of a Fortuin--Kasteleyn type representation of the model. We give the equation of the Kert\'esz line separating (in the β\beta--hh plane) the two behaviours. As a result, we get that this line exhibits, as soon as q3q \geqslant 3, a very interesting cusp where it separates from the thermodynamic transition line

    Thrombolysis for Ischemic Stroke in Patients Aged 90 Years or Older

    Get PDF
    none5noneM. Balestrino; L. Dinia; M. Del Sette; B. Albano; C. GandolfoBalestrino, Maurizio; L., Dinia; M., Del Sette; B., Albano; Gandolfo, Carl

    Shift in critical temperature for random spatial permutations with cycle weights

    Full text link
    We examine a phase transition in a model of random spatial permutations which originates in a study of the interacting Bose gas. Permutations are weighted according to point positions; the low-temperature onset of the appearance of arbitrarily long cycles is connected to the phase transition of Bose-Einstein condensates. In our simplified model, point positions are held fixed on the fully occupied cubic lattice and interactions are expressed as Ewens-type weights on cycle lengths of permutations. The critical temperature of the transition to long cycles depends on an interaction-strength parameter α\alpha. For weak interactions, the shift in critical temperature is expected to be linear in α\alpha with constant of linearity cc. Using Markov chain Monte Carlo methods and finite-size scaling, we find c=0.618±0.086c = 0.618 \pm 0.086. This finding matches a similar analytical result of Ueltschi and Betz. We also examine the mean longest cycle length as a fraction of the number of sites in long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial permutations.Comment: v2 incorporated reviewer comments. v3 removed two extraneous figures which appeared at the end of the PDF

    Cluster Percolation in O(n) Spin Models

    Get PDF
    The spontaneous symmetry breaking in the Ising model can be equivalently described in terms of percolation of Wolff clusters. In O(n) spin models similar clusters can be built in a general way, and they are currently used to update these systems in Monte Carlo simulations. We show that for 3-dimensional O(2), O(3) and O(4) such clusters are indeed the physical `islands' of the systems, i.e., they percolate at the physical threshold and the percolation exponents are in the universality class of the corresponding model. For O(2) and O(3) the result is proven analytically, for O(4) we derived it by numerical simulations.Comment: 11 pages, 8 figures, 2 tables, minor modification

    A lattice model for the line tension of a sessile drop

    Full text link
    Within a semi--infinite thre--dimensional lattice gas model describing the coexistence of two phases on a substrate, we study, by cluster expansion techniques, the free energy (line tension) associated with the contact line between the two phases and the substrate. We show that this line tension, is given at low temperature by a convergent series whose leading term is negative, and equals 0 at zero temperature

    Phase transitions for PP-adic Potts model on the Cayley tree of order three

    Full text link
    In the present paper, we study a phase transition problem for the qq-state pp-adic Potts model over the Cayley tree of order three. We consider a more general notion of pp-adic Gibbs measure which depends on parameter \rho\in\bq_p. Such a measure is called {\it generalized pp-adic quasi Gibbs measure}. When ρ\rho equals to pp-adic exponent, then it coincides with the pp-adic Gibbs measure. When ρ=p\rho=p, then it coincides with pp-adic quasi Gibbs measure. Therefore, we investigate two regimes with respect to the value of ρp|\rho|_p. Namely, in the first regime, one takes ρ=expp(J)\rho=\exp_p(J) for some J\in\bq_p, in the second one ρp<1|\rho|_p<1. In each regime, we first find conditions for the existence of generalized pp-adic quasi Gibbs measures. Furthermore, in the first regime, we establish the existence of the phase transition under some conditions. In the second regime, when ˚p,qpp2|\r|_p,|q|_p\leq p^{-2} we prove the existence of a quasi phase transition. It turns out that if ˚p<q1p2<1|\r|_p<|q-1|_p^2<1 and \sqrt{-3}\in\bq_p, then one finds the existence of the strong phase transition.Comment: 27 page

    Radiological assessment of dementia: the Italian inter-society consensus for a practical and clinically oriented guide to image acquisition, evaluation, and reporting

    Get PDF
    Background: Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice. Results: We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report. In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine

    Post-coital intra-cerebral venous hemorrhage in a 78-year-old man with jugular valve incompetence: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Spontaneous intra-cerebral hemorrhage can occur in patients with venous disease due to obstructed venous outflow.</p> <p>Case presentation</p> <p>We report the case of a 78-year-old Caucasian man with jugular valve incompetence who experienced an intra-cerebral temporo-occipital hemorrhage following sexual intercourse. He had no other risk factors for an intra-cerebral hemorrhage.</p> <p>Conclusions</p> <p>To the best of our knowledge, this is the first case of intra-cerebral hemorrhage due to jugular valve incompetence in association with the physical exertion associated with sexual intercourse.</p

    Nuclear Analyses for the Assessment of the Loads on the ITER Radial Neutron Camera In-Port System and Evaluation of Its Measurement Performances

    Get PDF
    The radial neutron camera (RNC) is a key ITER diagnostic system designed to measure the uncollided 14- and 2.5-MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions, through an array of detectors covering a full poloidal plasma section along collimated lines of sight (LoS). Its main objective is the assessment of the neutron emissivity/alpha source profile and the total neutron source strength, providing spatially resolved measurements of several parameters needed for fusion power estimation, plasma control, and plasma physics studies. The present RNC layout is composed of two fan-shaped collimating structures viewing the plasma radially through vertical slots in the diagnostic shielding module (DSM) of ITER Equatorial Port 1 (EP01): the ex-port subsystem and the in-port one. The ex-port subsystem, devoted to the plasma core coverage, extends from the Port Interspace to the Bioshield Plug: it consists of a massive shielding unit hosting two sets of collimators lying on different toroidal planes, leading to a total of 16 interleaved LoS. The in-port system consists of a cassette, integrated inside the port plug DSM, containing two detectors per each of the six LoS looking at the plasma edges. The in-port system must guarantee the required measurement performances in critical operating conditions in terms of high radiation levels, given its proximity to the plasma neutron source. This article presents an updated neutronic analysis based on the latest design of the in-port system and port plug. It has been performed by means of the Monte Carlo MCNP code and provides nuclear loads on the in-port RNC during normal operating conditions (NOC) and inputs for the measurement performance analysis
    corecore