1,793 research outputs found

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Systems-level discovery of quality attributes and candidate pathways for optimized production of human pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Numerous protocols exist for differentiation of human pluripotent stem cells (hPSCs) to cardiomyocytes (CMs). Although these methods have improved in efficiency over the past decade, they remain highly variable in their resultant purities, not only among different source hPSC lines but also between batches in the same cell line. This substantial heterogeneity of hPSC-CM product outcomes points to poorly-understood, highly sensitive, and uncontrolled variables present within the overall process. Herein, we have undertaken a multi-omic discovery approach to identify key temporal differences in cell attributes between high- and low-purity hPSC-CM differentiations to provide systems-level insights into underlying mechanisms which drive these populations to divergent endpoints. Specifically, we are combining metabolomic, proteomic, lipidomic, and transcriptomic analyses collected throughout the differentiation process for high- and low-purity (as assessed by %cTnT+ via flow cytometry) differentiation batches. In addition to gaining fundamental insights into the underlying biology of the differentiation process, we are extending our analyses to 1) identify putative critical quality attributes for use in on- or at-line analytics for continuous process monitoring, 2) enhance process robustness through the development of protocols aimed at depressing off-target pathways and enhancing on-target ones, and 3) establish potential feedforward/feedback control schemes based on real-time analytics to respond to in-process intermediate quality attributes through rational adjustment of process parameters. To date we have identified novel putative candidate quality attributes for process monitoring and cellular pathways which may be able to be modulated to augment process robustness in a scaled manufacturing context. Beyond standard single-omic analytical workflows, ongoing work is aimed at integrating these data for deepened insight, including functional integration with systems-scale modeling and high-dimensional machine-learning methodologies to extract dynamic relationships among variables over time

    African American Children’s Depressive Symptoms: The Prospective Effects of Neighborhood Disorder, Stressful Life Events, and Parenting

    Get PDF
    The prospective effects of observed neighborhood disorder, stressful life events, and parents’ engagement in inductive reasoning on adolescents’ depressive symptoms were examined using data collected from 777 African American families. Multilevel analyses revealed that stressful life events experienced at age 11 predicted depressive symptoms at age 13. Furthermore, a significant interaction between neighborhood disorder and parents’ engagement in inductive reasoning was found, indicating that parental use of inductive reasoning was a protective factor for depressive symptoms particularly for youths living in highly disordered neighborhoods. The importance of examining correlates of depressive symptoms from a contextual framework, focusing on individuals, families, and neighborhood contexts, is emphasized

    Poor availability of context-specific evidence hampers decision-making in conservation

    Get PDF
    Evidence-based conservation relies on reliable and relevant evidence. Practitioners often prefer locally relevant studies whose results are more likely to be transferable to the context of planned conservation interventions. To quantify the availability of relevant evidence for amphibian and bird conservation we reviewed Conservation Evidence, a database of quantitative tests of conservation interventions. Studies were geographically clustered, and few locally conducted studies were found in Western sub-Saharan Africa, Russia, South East Asia, and Eastern South America. Globally there were extremely low densities of studies per intervention - fewer than one study within 2000 km of a given location. The availability of relevant evidence was extremely low when we restricted studies to those studying biomes or taxonomic orders containing high percentages of threatened species, compared to the most frequently studied biomes and taxonomic orders. Further constraining the evidence by study design showed that only 17–20% of amphibian and bird studies used reliable designs. Our results highlight the paucity of evidence on the effectiveness of conservation interventions, and the disparity in evidence for local contexts that are frequently studied and those where conservation needs are greatest. Addressing the serious global shortfall in context-specific evidence requires a step change in the frequency of testing conservation interventions, greater use of reliable study designs and standardized metrics, and methodological advances to analyze patchy evidence bases

    First Results from Sentinel-1A InSAR over Australia: Application to the Perth Basin

    Get PDF
    Past ground-based geodetic measurements in the Perth Basin, Australia, record small-magnitude subsidence (up to 7 mm/y), but are limited to discrete points or traverses across parts of the metropolitan area. Here, we investigate deformation over a much larger region by performing the first application of Sentinel-1A InSAR data to Australia. The duration of the study is short (0.7 y), as dictated by the availability of Sentinel-1A data. Despite this limited observation period, verification of Sentinel-1A with continuous GPS and independent TerraSAR-X provides new insights into the deformation field of the Perth Basin. The displacements recorded by each satellite are in agreement, identifying broad (>5 km wide) areas of subsidence at rates up to 15 mm/y. Subsidence at rates greater than 20 mm/y over smaller regions ( 2 km wide) is coincident with wetland areas, where displacements are temporally correlated with changes in groundwater levels in the unconfined aquifer. Longer InSAR time series are required to determine whether these measured displacements are representative of long-term deformation or (more likely) seasonal variations. However, the agreement between datasets demonstrates the ability of Sentinel-1A to detect small-magnitude deformation over different spatial scales (from 2 km–10 s of km) in the Perth Basin. We suggest that, even over short time periods, these data are useful as a reconnaissance tool to identify regions for subsequent targeted studies, particularly given the large swath size of radar acquisitions, which facilitates analysis of a broader portion of the deformation field than ground-based methods or single scenes of TerraSAR-X

    The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals

    Get PDF
    We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and AO imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution H-band APOGEE spectra provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and RVs for over 1400 stars spanning spectral types of M0-L0, providing the largest set of NIR M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m/s for bright M dwarfs. We present preliminary results of this telluric modeling technique in this paper.Comment: Submitted to Astronomical Journa

    Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    Get PDF
    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.Comment: 18 pages, 17 figures. Accepted for publication in Ap

    FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust

    Get PDF
    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B-V). We demonstrate that the reddening in these quasars is best-described by SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 < z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a "normal" blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up < 15-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15-20% as long as the unobscured, blue quasar phase.Comment: 21 pages, 17 figures plus a spectral atlas. Accepted for publication in the Astrophysical Journa
    • …
    corecore