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Abstract 

1. Monitoring the impacts of anthropogenic threats and interventions to mitigate these 

threats is key to understanding how to best conserve biodiversity. Ecologists use many 

different study designs to monitor such impacts. Simpler designs lacking controls (e.g. 

Before-After (BA) and After) or pre-impact data (e.g. Control-Impact (CI)) are considered 

to be less robust than more complex designs (e.g. Before-After Control-Impact (BACI) or 

Randomised Controlled Trials (RCTs)). However, we lack quantitative estimates of how 

much less accurate simpler study designs are in ecology. Understanding this could help 

prioritise research and weight studies by their design’s accuracy in meta-analysis and 

evidence assessment. 

2. We compared how accurately five study designs estimated the true effect of a simulated 

environmental impact that caused a step-change response in a population’s density. We 

derived empirical estimates of several simulation parameters from 47 ecological datasets 

to ensure our simulations were realistic. We measured design performance by 

determining the percentage of simulations where: (i) the true effect fell within the 95% 

Confidence Intervals of effect size estimates, and (ii) each design correctly estimated the 

true effect’s direction and magnitude. We also considered how sample size affected their 

performance. 

3. We demonstrated that BACI designs performed: 1.3-1.8 times better than RCTs; 2.9-4.2 

times vs BA; 3.2-4.6 times vs CI; and 7.1-10.1 times vs After designs (depending on 

sample size), when correctly estimating true effect’s direction and magnitude to within 

±30%. Although BACI designs suffered from low power at small sample sizes, they 

outperformed other designs for almost all performance measures. Increasing sample 

size improved BACI design accuracy but only increased the precision of simpler designs 

around biased estimates. 

4. Synthesis and applications. We suggest that more investment in more robust designs is 

needed in ecology since inferences from simpler designs, even with large sample sizes 
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may be misleading. Facilitating this requires longer-term funding and stronger research-

practice partnerships. We also propose ‘accuracy weights’ and demonstrate how they 

can weight studies in three recent meta-analyses by accounting for study design and 

sample size. We hope these help decision-makers and meta-analysts better account for 

study design when assessing evidence. 

 

Foreign language abstract 

1. 生物多様性の保全を効果的に行うためには、人為的脅威の影響や保全対策の効果を適切に

評価することが重要となる。生態学ではこのような評価を行うために、様々な研究デザインが用

いられている。対照区が存在しない Before-After (BA)デザインや After デザイン、また処理以

前のデータが存在しない Control-Impact (CI)デザインなど簡素な研究デザインは、Before-

After Control-Impact (BACI)デザインやランダム化比較試験（RCTs: Randomised Controlled 

Trials)などの複雑なデザインよりも頑健さに劣ると考えられている。しかしながら、生態学におい

てこれら簡素な研究デザインがどれだけ正確度に劣るのか、定量的な評価はこれまで行われ

ていない。研究デザインの正確度を定量的に評価することで、メタ解析やエビデンスの評価を

行う際に、用いられた研究デザインの正確度に基づいて各研究の優先順位付けや重み付けを

行うことが可能になるだろう。 

 

2. 本研究では、環境変化が個体群密度に及ぼす影響を、5 種類の研究デザインがどれだけ正確

に推定することができるのか、シミュレーションを用いて検討した。より現実に即した状況を再現

するため、シミュレーションで用いたパラメータは、47 の生態学的データから抽出した。各研究

デザインの正確度は、シミュレーションにおいて、（１）推定された効果サイズの 95％信頼区間

に真の効果が含まれる割合、（２）推定された効果が真の効果の方向・程度と一致した割合、を

算出することによって評価した。またサンプルサイズの違いが各研究デザインの正確度に及ぼ

す影響も検討した。 

 

3. シミュレーションの結果、BACI デザインはランダム化比較試験に対して 1.3-1.8 倍、BA デザイ

ンに対して 2.9-4.2 倍、CI デザインに対して 3.2-4.6 倍、After デザインに比較すると 7.1-10.1 倍

も正確に真の効果を推定できる（推定された効果が真の効果の方向と一致し、且つ真の効果の

±30%内に含まれる）ことが明らかになった（比較値のばらつきはサンプルサイズによる）。BACI

デザインの正確度はサンプルサイズが小さい場合には低下したが、それでもほとんどの指標に

おいて他のデザインよりも高い正確度を示していた。サンプルサイズを増やすことで BACI デザ

インの正確度は向上したが、他の研究デザインでは偏った推定値の精度が向上するだけであ

った。 

 

4. Synthesis and applications. 例えサンプルサイズが十分であったとしても、簡素なデザインに基

づいた推論は正確でない可能性があるため、生態学においてもより頑健な研究デザインの利
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用を推進していく必要があると考えられる。頑健な研究デザインの利用を推進するためには、

長期に渡る研究資金の確保や、研究と実践の間でのより強固な連携が必要となるだろう。本研

究では更にこれらの結果に基づいて、メタ解析において研究デザインとサンプルサイズに基づ

いて各研究の重み付けをする手法を提案し、近年行われた３つのメタ解析を用いてその実用例

を提示した。これらの結果は、意思決定者やメタ解析を行う研究者が、研究デザインを考慮した

エビデンスの評価を行うために有用となるだろう。 

 

Keywords: Before-After Control-Impact, causal inference, evidence synthesis, impact 

evaluation, meta-analysis, randomised controlled trial, study design, inverse-variance 

weighting 

 

Introduction 

Monitoring the impact of human activities on biodiversity is fundamental to 

understanding how to effectively conserve biodiversity. This includes monitoring the impacts 

of anthropogenic threats, as well as the effectiveness of management interventions to 

mitigate such threats. The main challenge for such monitoring is disentangling natural 

environmental change from anthropogenic change (Hewitt et al. 2001; Hipel et al. 1978), 

whilst considering the focal impact’s statistical (Osenberg and Schmitt 1996; Box & Tiao 

1975) and ecological significance (Wolfe et al. 1987). The complexity of ecosystems, 

including various sources of spatiotemporal variation and confounding variables, has 

catalysed much research on understanding the best ways to design impact assessments 

(Lettenmaier et al. 1978; Stewart-Oaten et al. 1986; Osenberg et al. 2006). Whilst 

improvements in study design have helped ecologists to more accurately quantify human 

impacts on biodiversity, a range of designs with varying complexity and biases still persist 

(De Palma et al., 2018; Table 1). 

 

Study design is composed of three major aspects: (i) pre-impact sampling, (ii) use of 

controls, and (iii) randomised allocation of independent sampling units (here we term these 

“sites”). Adding pre-impact sampling to an After design - where monitoring only occurs after 
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the impact – produces the Before-After (BA) design (Table 1). This compares the system’s 

state before and after the impact, attempting to minimise bias from temporal variability and 

pre-impact conditions. 

 

Addition of control sites to BA designs results in Before-After Control-Impact (BACI) 

designs, where the average difference between control and impact sites is compared before 

and after an impact (Table 1; Stewart-Oaten et al. 1986; Osenberg et al. 2006). BACI 

designs use the pre-impact differences between control and impact sites as a null 

hypothesis for post-impact differences that would exist if the focal impact was absent – 

avoiding bias from a lack of a control (Thiault et al. 2016). Problems with site-specific 

temporal variation in BACI designs can be addressed by sampling control and impact sites 

simultaneously, several times before and after the impact (Before-After Control-Impact 

Paired-Series (BACIPS) design; Stewart-Oaten & Bence 2001).  

 

Random allocation of sites to control and impact groups represents the third major aspect of 

study design. Control-Impact (CI) designs, analogous with Space-For-Time Substitutions 

(França et al. 2016; De Palma et al. 2018) or Intervention Versus Reference Site designs 

(Stewart-Oaten & Bence 2001), compare non-randomly allocated control and impact sites 

after the impact (Table 1). However, this non-random allocation can violate the assumption 

that the only differences between control and impact sites are due to the focal impact, 

leading to biased results (De Palma et al. 2018; Damgaard 2019; Larsen et al. 2019; Table 

1). Randomised Controlled Trials (RCTs) minimise this bias by truly randomising site 

allocation to impact and control groups (Table 1). This reduces the need to sample before 

and after the impact to account for any initial differences (i.e. BACI design) if sufficient 

numbers of sites and points in time are sampled (Larsen et al. 2019; De Palma et al., 2018).   
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Table 1 - Comparison of the key features of study designs. Graphs show how designs 

sample from impact (green points) and control (blue points) sites over time, before and after 

an impact (white versus grey areas, respectively). Solid horizontal lines show the average 

density of sites measured to calculate each design’s effect size estimate. Dashed horizontal 

lines for CI and RCTs represent the pre-impact differences between the mean densities of 

control and impact sites, which can cause bias – note less difference for RCTs (with high 

sample size) versus CI. Many design variants exist – e.g. MBACI for BACI with multiple 

sites, R for Reference in BARI (Webb et al. 2012). 
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Despite the development of robust approaches to quantifying impacts, greater usage 

of less robust designs persists. Three systematic maps on the biodiversity impacts of 

different threats and interventions found that a low proportion of studies used BACI (6-29%) 

and BA designs (3-37%), but many more used CI designs (48-89%) (Bernes et al. 2015, 

Bernes et al. 2017, Papathanasopoulou et al. 2016). 

 

The greater prevalence of CI designs in the ecological literature probably reflects that 

they can be easier to implement than more complex study designs. For example, RCTs are 

widely used in fields, such as medicine, where random allocation of small-scale experimental 

units to impact and control groups is possible (Tugwell & Haynes 2006; Downs & Black 

1998). However, RCTs often cannot be used in ecology because true randomisation of 

experimental units is more difficult with large-scale sites (e.g. protected areas) compared to 

smaller, more readily-available plots (Larsen et al. 2019; Stewart-Oaten & Bence 2001). 

Therefore, ecologists tend to use pseudo-experimental designs lacking randomisation, such 

as BA, CI and BACI designs (Table 1; De Palma et al. 2018). Nevertheless, constraints due 

to cost, logistics and project duration often prevent the implementation of complex BACI and 

even simpler BA designs because of the need to revisit sites pre- and post-impact (França et 

al. 2016, Osenberg et al. 2011; Table 1). 

 

The disparities between the robustness of study designs and their usage is 

concerning as many studies may be making misleading inferences about anthropogenic 

impacts. Some empirical comparisons of the consequences of using BACI, BA and CI 

designs have been undertaken (Osenberg et al. 2011; França et al. 2016; Mahlum 2018; 

Smokorowski & Randall 2017). However, we are yet to understand how inaccurate simpler 

designs are relative to complex ones, or the influence of sample size on these patterns (e.g. 

are simpler designs with large sample sizes equivalent to more complex designs with 

smaller sample sizes?). A quantitative comparison of the accuracy of different designs and 

their sample size would help us better understand these issues. 
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To address this knowledge gap, we simulate a hypothetical population’s response to 

an impact, and compare how accurately different study designs estimate that response. We 

use empirically-derived parameter estimates from 47 ecological datasets to generate 

realistic control and impact data, before and after an impact. BACI, RCT, BA, CI and After 

designs are then used to sample from the simulated data with various levels of spatial 

replication (control and impact sites). We compare the accuracy of each design by their 

ability first to predict the correct direction of the response, and second to estimate the 

response to within a given percentage. Our goal is to inform the development of a 

quantitative scale of the comparative accuracy of different designs. Such a scale would have 

utility for future monitoring of anthropogenic impacts, as well as assessing the quality of 

ecological studies used to inform policy and practice. 

 

Materials and methods 

We simulated a hypothetical population with true density   that varied over T time 

steps before and after a chronic impact occurred (Fig.1). For example, if T=10, then time 

steps 1-10 were classified as the ‘before period’ (i.e. before the impact occurred) and time 

steps 11-20 were classified as the ‘after period’ (Fig.1). The true density was monitored in 

sites where the impact occurred (‘impact sites’) and where the impact was absent (‘control 

sites’). 

  

 We set the mean true density to 50 and randomly sampled T values from a Poisson 

distribution ( =50) to vary the true density over T time steps in the before period for control 

and impact sites. These T values defined the true density in each time step before the 

impact occurred (e.g.     for impact sites in the tth time step). To simulate a step-change 

response at both control and impact sites after the impact occurred (Fig.1), we sampled from 

a different Poisson distribution with   adjusted by an empirically-derived amount   ( +  ; 
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Fig.1; Table 2) for impact sites and an empirically-derived amount   for control sites ( +  ; 

Fig.1; Table 2).   and   were varied using empirical estimates of the proportional change in 

control and impact sites in the before period versus the after period,    and   , respectively, 

sampled from 47 ecological datasets   =         ;   =         ; Table 2). A list of 

published data sources for empirical estimates used in this study are provided in the Data 

sources section (see also Appendix S1 in Supporting Information). 

 

While we focus on a step-change response in our simulation, temporal biodiversity 

dynamics following disturbances or interventions can follow different trajectories (Di Fonzo et 

al. 2013; Thiault et al. 2016). However, to simplify the simulation as much as possible, 

particularly in terms of computational demands, using a step-change response was most 

appropriate to test the relative accuracy of each design. 

 

Using the simulated data for before and after periods we sampled various numbers of 

impact (nI) and control (nC) sites (these could also be plots or transects; Fig.1). For RCTs 

that use random allocation of sites to control and impact groups, we randomly sampled sites 

from two normal distributions for each time step: one with a mean,     , for impact sites and 

one with a mean,     , for control sites (Fig.1). The number of sites sampled was the same 

for all time steps. The standard deviation of each normal distribution represented the 

variation amongst sites and was calculated by multiplying the mean by the coefficient of 

variation (e.g. control sites:     =      CVS ; impact sites:     =      CVS; Table 2). We varied 

CVS by randomly drawing values from a truncated normal distribution: N(         

                   . 
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Table 2 - Definitions and summary statistics for all simulation parameters (termed ‘Sim.’) and 

empirically-derived parameters (termed ‘Emp.’; Appendix S1). Equations show how each 

parameter was calculated. For empirically-derived parameters,    refers to the average of 

sampled sites taken from 47 ecological datasets (e.g.          refers to the average of all control 

sites in the after period; Appendix S1). 

 

Para-
meter 

Definition Source Equation Mean SD Min Max 

    Change in control between 
before and after periods 

Emp.    = 
           

           
 0.918 0.181 0.605 1.31 

   Change in impact between 
before and after periods 

Emp.    = 
          

          
 0.967 0.230 0.579 1.46 

     Average value of control 
sites as a proportion of the 
average value of impact 
sites in the before period 

Emp.      = 
           

          
 1.13 0.306 0.654 1.89 

I True change in impact sites 
from before to after impact 

Emp. I =   (      -1.65 11.5 -21.1 23.2 

C True change in control 
sites from before period to 
after period 

Emp. C =   (    ) -4.10 9.05 -19.8 15.4 

     Difference between true 
densities of control and 
impact sites in before 
period 

Emp.      =   (      ) 6.60 15.3 -17.3 44.5 

  True density across all time 
steps 

Sim.   = 50 - - 50 50 

T Total number of time steps 
simulated 

Sim. T = {2,4,6,8,10} - - 2 10 

nT Number of time steps 
sampled in each period 

Sim. nT = T - - 2 10 

     True density in impact sites 
in time step t 

Sim. Before:                 
After:                   

- - - - 

     Standard deviation of 
impact sites in time step t 

Sim.     =          - - - - 

     True density in control sites 
in time step t 

Sim. Before:                 
After:                   

- - - - 

     Standard deviation of 
control sites in time step t 

Sim.     =          - - - - 
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CVS Coefficient of variation 
(variation amongst sites) 

Sim.     N(             0.10 0.05 0.00 0.20 

SIn,t n
th

 impact site sampled in 
time step t 

Sim. (SI1,t,...,SInI,t) ~ N(           - - - - 

SCn,t n
th

 control site sampled in 
time step t 

Sim. Randomised:  
(SC1,t,...,SCnc,t) ~ N(           
Non-randomised:  
(SC1,t,...,SCnc,t) ~ N(                

- - - - 

nI Number of impact sites 
sampled 

Sim. nI = {1,5,10,25,50} - - 1 50 

nC Number of control sites 
sampled 

Sim. nC = {1,5,10,25,50} - - 1 50 

To account for non-random allocation of sites to control and impact groups in BACI, 

BA, CI and After designs, we repeated the same approach but with one important 

modification. We adjusted the true density of control sites in every time step,     , by an 

empirically-derived amount, dCIB (    + dCIB; Fig.1; Table 2). To vary dCIB, we used empirical 

estimates of the proportional difference between control and impact sites in the before 

period, pCIB, sampled from 47 ecological datasets (dCIB=   (pCIB-1); Table 2; Appendix S1). 

This simulated difference between control and impact sites accounted for different levels of 

site selection bias in non-randomised designs, including situations where little or no bias 

may be present (e.g. dCIB 0).  

 

We calculated effect size estimates for each design by first finding the mean density 

of sampled sites across all time steps for control and impact groups in the before period 

(BeforeImpact, BeforeControl) and the after period (AfterImpact, AfterControl). We assumed that 

sampling occurred in all time steps (nT = T) in both periods. We did this as the investigator 

may wish to only estimate the effect over a certain timescale (which will be context-specific) 

and we lacked the computational capabilities to simulate all possible sampling permutations 

using fewer than the full number of time steps (e.g. sampling in certain intervals or 

continuous periods of time; Wauchope et al. 2019). 
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Fig.1 - An overview of our simulation. Step 1 shows true densities of control and 

impact sites generated in the before period (white area). Step 2 shows true densities of 

control and impact sites generated in the after period (grey area) to reflect a step-change 

response (using I and C); the true density in each time step (t) is shown (    , impact: green; 

and     , control: blue). Step 3 shows how control and impact sites (SI and SC) are sampled 

(nI and nC = 10) for both randomised and non-randomised designs. 

 

Effect size estimates were calculated using these mean densities, as appropriate for 

each study design (Table 3). For example, RCT effect sizes were found by subtracting 
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AfterControl from AfterImpact, whilst BA effect sizes were found by subtracting BeforeImpact from 

AfterImpact (Table 3). The exception was the After design, for which we found the mean of 

sampled sites in the first time step and subtracted this from the mean of sampled sites in the 

final time step of the after period (Table 3). We defined the true effect as the change in the 

mean of true densities of impact sites between the before and after periods minus the 

equivalent change in the mean of true densities of control sites (Table 3). As discussed 

previously, we did this because we wanted to compare each design’s relative accuracy at 

estimating the true effect over the number of time steps simulated. 

 

We ran the simulation under 1000 different scenarios, varying: (i) the true change in 

control sites (C); (ii) the true change in impact sites (I); (iii) the mean difference between 

control and impact sites in the before period (    ); and (iv) the variation between sites 

(CVS). For each simulation scenario, we varied the number of time steps simulated (T = 2, 4, 

6, 8 or 10), as well as the number of impact sites (nI = 1, 5, 10, 25, 50) and control sites (nC= 

2, 5, 10, 25, 50) sampled independently to use every possible pairwise combination - a total 

of 125 combinations. Overall, we simulated 1000 scenarios with 125 different sampling 

combinations in each, repeating each scenario 1000 times (1000 x (1000 x 125) = 1.25 x 108 

runs). 
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Table 3 - Equations showing effect size estimate, variance and error calculation for each study 

design using mean densities of control or impact sites in each period (e.g. AfterImpact refers to the 

mean of sampled impact sites across all time steps in the after period). For the After design, the 

effect size was calculated by finding the difference between the final time step (t=T) and the first 

 Equation  

 Effect size estimate Pooled variance (  
 ) Error 
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time step of the after period (1).    and    refer to the number of sites and variance in that 

period (e.g.     and    
  refer to the number of impact sites and variance in the After period). 

 

Effect size estimates for each design were used to investigate their relative accuracy. 

We calculated 95% Confidence Intervals (CIs) using the pooled variance and associated error 

for each effect size estimate (Table 3). We used these 95% CIs to estimate the percentage of 

simulations repetitions where: (i) the true effect fell within the 95% CIs of effect size estimates 

(coverage probability); (ii) the correct direction was detected (95% CIs entirely above or below 

zero); (iii) the estimated effect size under- or overestimated the true effect (95% CIs entirely 

above or below true effect). We also investigated the percentage of simulation repetitions in 

which each design’s effect size estimate: (i) had the same direction as the true effect; and (ii) 

was both within a given percentage of the true effect and of the same direction. We believe 

these two measures capture the major aspects of accuracy and precision that are desirable in a 

study design. 

 

We calculated all these measures for all possible pairwise combinations of control and 

impact sites (e.g. two control and two impact sites, two control and five impact sites etc.). We 

set  five thresholds to measure the percentage of times an effect size estimate was within a 

certain percentage of the true effect: 10, 20, 30, 40 and 50%. We also explored how varying the 

terms C and dCIB (controlling bias in non-BACI designs) for three levels of magnitude (no bias: 1; 

low bias: 0.9 or 1.1; high bias: 0.7 or 1.3) affected this percentage (Figures S7 and S8). 

 

We used Generalised Linear Models with a beta error distribution to determine the 

relationship between the performance of each design (the response variable; see below) and 

two explanatory variables (number of control sites and the number of impact sites). For the 

response variable we used the proportion of simulation repetitions where the effect size 
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estimate was within ±30% of the true effect and had the correct direction. We only considered 

results for an accuracy threshold of ±30% as this was deemed a reasonable level of accuracy 

and we wanted to simplify the interpretation of our results as much as possible. We also present 

results for other accuracy thresholds (±10% and ±50%) in Appendix S3. 

 

Based on graphical observations of the relationship between the response and 

explanatory variables (Fig.4), we included impact and control sites as log transformed 

explanatory variables for models of BACI and RCT designs and tested models with and without 

an interaction term between these variables (Appendix S4). The BACI model with the interaction 

term had the lowest AIC by more than 2 units and was chosen as the best model. The RCT 

model without the interaction term was only lower by 1.8 units but was chosen as it was more 

parsimonious (Appendix S4). As the performance of BA, CI and After designs did not vary with 

the number of impact or control sites, we did not create any models for these designs (Fig.4). 

We calculated quasi-R2 values (Appendix S4) to test model performance using the equation:  

           
        

             
  equation 1. 

 

Both models were only slightly over-dispersed (RCT model: θ = 1.19; BACI model: θ = 

1.25) and Pearson's χ2 residuals were non-significant (p>0.05) suggesting no significant 

patterns remained in the residuals. There were also no observable patterns between residuals 

and explanatory variables or fitted values. 

 

For BACI and RCT designs we converted estimated coefficients (β) from log odds 

(Appendix S4) to proportions to create an ‘accuracy weight’ equation for each design (eqn 2 and 

3). We found the accuracy weights for BA, CI and After designs by simply taking the mean 

proportion of simulation repetitions where the effect size estimate was within ±30% of the true 
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effect and had the correct direction across all combinations of impact and control sites. These 

accuracy weights are on a continuous scale between a minimum of 0 (lowest accuracy) and a 

maximum of 1 (highest accuracy - see Results, Discussion and Appendix S2 for how to apply 

these weights): 

BACI accuracy weight =  
 

   

  

         
           

       

        
              

 

 (equation 2) 

RCT accuracy weight =  
 

   
           

           
        

 (equation 3) 

where       = Intercept coefficient,    = Impact sites coefficient,    = Control sites coefficient 

and       = interaction coefficient between impact and control sites. 

 

We applied our accuracy weights to three recent ecological meta-analyses: Bernes et al. 

(2018) on the effects of ungulate herbivory on vegetation and invertebrates; Eales et al. (2018) 

on the effects of prescribed burning on forest biodiversity; and Sandström et al. (2019) on the 

impacts of dead wood manipulation on forest biodiversity. We found these meta-analyses by 

searching the Environmental Evidence Journal and the Journal of Applied Ecology using the 

search terms: “meta analysis” OR “meta-analysis” and reviewing studies published since 2018. 

Only the three previously mentioned meta-analyses contained a sufficient range of study 

designs (Appendix S2) and readily available associated data on study design, replicates and 

effect sizes. We repeated analyses using random effects models following the authors’ 

methodology (e.g. including random factors such as Site IDs) using the metaphor package 

(Viechtbauer 2010; see Appendix S2). We were able to replicate 128 out of 130 summary effect 

sizes (comparisons) using the authors’ methodology and inverse-variance weighting, which we 

repeated with our accuracy weights. Two summary effect sizes could not be replicated from 

Bernes et al. (2018) due to lack of data labelling. We wanted to test how our weights altered the 
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conclusions of meta-analyses that used studies with a mixture of different study designs. 

Therefore, we only present results for 96 comparisons that used studies with at least one type of 

design. The mean number of studies of each design were: 9.0 BACI, 6.0 BA, 5.0 CI (see 

Appendix S2 for a breakdown of studies for each summary effect size). 

 

We used R statistical software version 3.5.1 (R Core Team 2018) with the doParallel 

package (Microsoft Corporation & Weston 2017) to increase computational performance. We 

provide data to repeat all analyses on Zenodo (Christie et al. 2019). 

 

Results 

 There was large variation in the performance of designs in accurately estimating 

the true effect. As overall patterns were similar across simulations with different time steps 

(Figures S1-S3), we present results when six time steps were simulated in both the before and 

after periods. 

 

BACI designs performed best at correctly identifying the direction of the true effect 

(≥94.1% of simulation repetitions; Fig.2A), followed by RCTs (≥90.8% of the time). Both BACI 

and RCTs far outperformed CI, BA, and particularly After designs – BA designs slightly 

outperformed CI designs (approximately 76.3% versus 74.7%) and both strongly outperformed 

After designs (approximately 49.8%; Fig.2A). Unlike BACI designs, non-BACI designs showed 

negligible improvements in performance with increasing replication (increases from two control 

and two impact sites to 50 control and 50 impact sites: BACI = +4.6%; After = +0.0%; BA = 

+0.5%; CI= +0.2%; RCT= +1.0%; Fig.2A). 
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Taking account of the uncertainty around these effect size estimates (95% CIs) gave 

different results – where overlap with zero was classed as non-significant and non-overlap as 

either positive or negative (Fig.2B). With this measure, RCTs were most likely to correctly 

predict the direction of the true effect with two impact and control sites, followed by CI, BACI, BA 

and After designs in decreasing order of performance (Fig.2B). BACI designs showed the 

greatest proportional improvement in this measure, outperforming RCTs at sample sizes above 

25 impact and control sites (Fig.2B). BA designs increased proportionally more than CI designs, 

reaching similar levels of performance above 25 impact and control sites (Fig.2B). BACI designs 

were also likely to produce non-significant effect sizes (overlap of 95% CIs with zero in ~45% of 

repetitions for 2 impact and control sites; Figure S3) at low sample sizes, but were extremely 

unlikely to produce significant effect sizes that had the wrong direction (~1% of repetitions for 2 

impact and control sites; Figure S3). 
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Fig. 2 – Performance of designs in correctly predicting the direction of the true effect for multiple 

levels of spatial replication with equal numbers of control and impact sites (see Figures S1 and 

S2 for other combinations of sites). Fig.2A measures this in terms of whether the effect size 

estimate was positive or negative, whilst Fig.2B considers whether the 95% CIs of this estimate 

correctly fell entirely above or below zero. See Table 1 for the definition of each design. 
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If we consider the coverage probabilities of each design (i.e. proportion of times the true 

effect fell within the 95% CIs of effect size estimates), BACI designs substantially outperformed 

other designs (Fig.3A). The true effect fell within the 95% CIs of BACI effect size estimate 

approximately 99% of the time, with negligible change from increasing replication (Fig.3A). The 

coverage probabilities for other designs (RCT, BA, CI, After) declined asymptotically with 

increasing replication as 95% CIs narrowed (Fig.3A). 

 

We also examined the tendency for designs to underestimate or overestimate the true 

effect (i.e. when 95% CIs did not overlap with true effect; Fig.3B). BACI designs rarely under- or 

overestimated the true effect (1% of repetitions), whilst both BA and CI designs were 

approximately twice as likely to underestimate than overestimate (Fig.3B). RCT designs and (to 

a lesser extent) After designs were equally as likely to underestimate as overestimate. With 

increasing replication, all non-BACI designs were increasingly likely to under- or overestimate 

the true effect, although this relationship was asymptotic – this probability increased at a higher 

rate for RCTs than other non-BACI designs (Fig.3B). 
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Fig. 3 – Percentage of simulation repetitions in which the 95% CIs of effect size estimates 

contained the true effect (coverage probability – Fig.3A) or were either greater than or less than 

the true effect (overestimate versus underestimate – Fig.3B). In Fig.3B, underestimates are 

shown by downward triangles, whilst overestimates are shown by upward triangles. This is 

shown for multiple levels of spatial replication with equal numbers of control and impact sites 

(see Figures S4 and S5 for other combinations of sites). See Table 1 for the definition of each 

design. 
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Consistent patterns were also found when considering the percentage of repetitions for 

which the effect size estimate was both within a certain percentage of the true effect and had 

the correct direction (Fig.4). First, RCT and BACI designs still far outperformed CI, BA or After 

designs (for ±30% accuracy threshold: BACI ≥65.6%, RCT ≥51.3%, BA ≥22.4%, CI ≥20.4%, 

After ≥9.3%; Fig.4). Second, BA designs appeared to perform slightly better than CI designs, 

especially as the accuracy threshold rose from ±10%-50% (from ~2% higher to ~7% higher 

performance; Fig.4). Similarly, both BA and CI designs performed relatively better compared to 

After designs with an increasing accuracy threshold (Fig.4).  

 

Third, BACI performance increased to a much greater extent with increasing replication 

than for other designs (Fig.4). For the ±30% accuracy threshold, increasing replication from two 

control and impact sites to 50 control and impact sites resulted in an increase of 26.7% for BACI 

compared to +3.8% for RCT, +0.2% for BA, +0.3% for CI and -0.4% for After (Fig.4). For BACI 

designs, increasing replication moderately in both control and impact sites resulted in greater 

performance than only increasing replication in just one type of site (±30% threshold: 76.6% at 

two impact and two control sites versus 72.8% at two impact and 50 control sites; Fig.3; Fig.S6).   

 

We also considered how varying the simulation parameters C and dCIB affected our results 

(Figures S7 and S8). Increasing the change in control (C) reduced the performance of BA 

designs substantially (Figure S7), whilst increasing the initial mean differences between impact 

and control groups in the before period (dCIB) reduced the performance of CI designs 

substantially (Figure S8).  
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Fig.4 – Performance of designs measured by percentage of simulation repetitions in which a 

design’s effect size estimate was both within ±10, 30 or 50% of the true effect and had the 

correct direction. This is shown for multiple levels of spatial replication with equal numbers of 

control and impact sites (see Figure S6 for other combinations of sites). See Table 1 for the 

definition of each design.  
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We used Generalised Linear Models to examine the factors that determined the 

performance of each design at estimating the direction and magnitude of the true effect to within 

±30% (using data from Fig.4 and Fig.S6). For RCT designs, there was little difference in the 

importance of control versus impact sites in predicting performance, whilst control sites seemed 

to have greater importance in BACI designs. High Pseudo-R2 values showed that our models 

explained far greater levels of variation in the data than null models (see Appendix S4). 

Weights for studies in meta-analyses can be calculated from these relationships of 

performance with sample size, which we term ‘accuracy weights’. This requires information 

about a study’s design and the number of independent control and impact units used (see 

Appendix S4). For example, França et al. (2016) used a BACI design, 29 impact and five control 

units and thus receives an accuracy weight of: 

 

   
  
                                

                     
 
 = 0.805 

 

(see Appendix S4; eqn 2). More examples of calculating weights for studies are shown in 

Appendix S2. 

 

We applied our accuracy weights to meta-analyses (Appendix S2) and found that they 

gave broadly similar results to conventional (inverse-variance) weighting (for 77% of 

comparisons). However, there was a tendency for our weights to alter the outcome to non-

significant (12% from negative to non-significant and 8% from positive to non-significant; Table 

4). A small proportion changed from non-significant to significantly positive (1%) or significantly 

negative (2%). No outcomes of summary effect sizes changed from positive to negative or vice 

versa (Table 4). 
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Table 4 – Comparison of outcomes for 96 summary effect sizes obtained using the accuracy 

weights proposed by this study versus conventional inverse-variance weighting. Summary effect 

sizes were extracted from 3 separate meta-analyses (see Methods). Cells show the proportion 

of effect sizes that were significantly positive, significantly negative or non-significant for both 

weighting systems. 

Weighting 
method 

 Accuracy weight 

 Outcome + Non-significant - 

Inverse-
variance 
weight 

+ 9 (9%) 8 (8%) 0 

Non-significant 1 (1%) 53 (55%) 2 (2%) 

- 0 11 (12%) 12 (13%) 

 

Discussion 

Using this simulation we have demonstrated that BACI and RCT designs are far more 

accurate than BA, CI and After designs. When estimating the true effect to within ±30% and 

correctly identifying its direction, BACI designs performed: 1.3-1.8 times better than RCTs; 2.9-

4.2 times better than BA; 3.2-4.6 times better than CI; and 7.1-10.1 times better than After 

designs (depending on sample size). This is because increasing sample size tends to only 

increase precision in non-BACI designs around a biased estimate of the true effect. 

 

This bias is generated by violating the assumptions underpinning these non-BACI 

designs (De Palma et al. 2018). BA designs assume there is no average change in control 

group mean before versus after the intervention, whilst CI designs assume the only differences 

that exist between control and impact sites are due to the focal impact (C and dCIB in Methods; 

Figures S7 and S8). RCTs also suffer from bias because they only minimise initial differences 

between impact and control group means (in the before period), which can be increased by 

spatiotemporal variation (De Palma et al. 2018). Blocking, pairing or matching sites in CI 

designs or including a proxy variable in statistical analysis could theoretically account for some 
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of these biases, but they cannot guarantee lower levels of bias. BACI designs better account for 

these initial differences, effectively removing this bias, and therefore have higher accuracy – 

they can also deal with spatiotemporal variation through repeated sampling through time 

(Thiault et al. 2016). 

 

The fact that increasing the sample size (precision) of non-BACI designs reduced the 

coverage probability (probability that the true effect fell within the 95% CIs of an effect size 

estimate; Fig.3A) supports this conclusion as 95% CIs converged on biased estimates. The 

coverage probability for BACI designs remained almost constant because the effect size 

estimates converged on the true effect – greater precision translated into greater accuracy for 

BACI designs. Greater accuracy is therefore best achieved using more robust designs that 

remove biases, such as BACI, with greater sample sizes. 

 

We nevertheless note that BACI designs are known to suffer from noise (Osenberg et al. 

2006), which was demonstrated by their tendency to classify the direction of the true effect as 

non-significant at low samples sizes (Figure S3). The low statistical power of BACI designs at 

small sample sizes is an issue and reinforces the need to ensure sufficient numbers of 

replicates are used in BACI designs (Osenberg et al. 2006), as well as to consider using 

Bayesian approaches to interpret effect sizes (Conner et al. 2016). When only considering the 

direction of effect size estimates, however, BACI and RCT designs gave the correct direction 

~20-30% more often than CI and BA designs, and ~40-45% more than After designs (Fig.2A).  

 

Our results provide strong evidence that simpler designs (e.g. After, BA and CI) often 

yield different inferences to BACI designs, as observed empirically by previous studies 

(Osenberg et al. 2011; França et al. 2016; Mahlum 2018; Smokorowski & Randall 2017). We 

also found that BA and CI designs were more prone to underestimation than overestimation 
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(Fig.3B), which is consistent with results from França et al. (2016) that showed a CI design 

underestimated the impacts of logging relative to a BACI design. Therefore, we argue that 

studies using After, BA and CI designs risk presenting misleading conclusions on the impact of 

threats and interventions. To our knowledge this simulation is not only the first quantitative 

comparison to demonstrate this, but also to show how inaccurate non-BACI designs may be, on 

average in ecology, under varying levels of spatial replication.  

 

We have confidence in these conclusions as we used empirically-derived parameter 

estimates from 47 ecological datasets to quantify the likelihood and magnitude of the biases that 

affect study designs in ecology (dCIB and C; Methods; Appendix S1). The context-dependency of 

our results, linked to how the likelihood and magnitude of biases varies across different fields of 

ecology, could be investigated using our R code if sufficient empirical data is available to 

characterise major parameters (dCIB and C; Figures S7 and S8) in different contexts. Future 

work could explore the effects of different types of trends and lag periods on the relative 

performance of designs, since previous literature has often assumed there is no overall pre-

impact trend - only fluctuations around a baseline average (Thiault et al. 2016; Lettenmaier et al. 

1978). Nevertheless, our results provide strong evidence that, generally in ecology, we should 

invest in implementing more robust designs whenever possible – investing effort into using 

simpler designs with greater sample sizes is simply inefficient. 

 

Although we strongly advocate for greater investment in more robust designs, we also 

realise there is a trade-off between the greater accuracy of robust designs and greater logistical 

ease of simpler designs. Whilst we can generate more studies with simpler designs more easily, 

their probable low accuracy means that we may use misleading evidence to inform policy and 

practice. We nevertheless argue that situations still arise where investigators can use robust 

designs and yet fail to; promoting greater awareness of more robust designs and opportunities 
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for their usage is important. For example, BACI design usage should be encouraged whenever 

prior knowledge exists of the timing of an impact or where suitable pre-impact data is available 

retrospectively (e.g. infrastructure projects, Protected Area designation). We also recognise the 

expensive nature of BACI designs, due to the need to revisit study sites before and after the 

impact, often hampers their implementation (De Palma et al. 2018). This means BACI designs 

can be impossible to use during short term projects limited by grant or studentship duration. 

Therefore, we suggest that longer-term funding and stronger research-practice partnerships are 

required to facilitate the use of BACI designs (Osenberg et al. 2011; De Palma et al. 2018).  

 

Some investigators may also avoid using BACI designs due to concerns over the 

difficulty in interpreting their results for lay audiences and stakeholders. We suggest that this 

can be overcome using Bayesian approaches that present easily interpretable probabilities to 

managers and practitioners (Conner et al. 2016) or new measures for BACI designs that aid 

ecological interpretation (Chevalier et al. 2019). 

 

Given the use of simpler designs will probably persist in the near future, we further argue 

that our results have major implications for decision-making and meta-analysis in ecology. We 

have proposed a novel weighting system that could help when meta-analyses are faced with 

studies that vary markedly in their design. Conventional meta-analysis typically uses inverse-

variance of studies as weights to attempt to account for study quality (Marín-Martínez & 

Sánchez-Meca 2010; Koricheva & Gurevitch 2014). However, this can greatly reduce the 

number of suitable primary studies since not all studies report variance (Koricheva & Gurevitch 

2014). Alternative approaches of meta-analysis to tackle poor data reporting, such as non-

parametric weighting by sample size, have been proposed (Mayerhofer et al. 2013; Adams et al. 

1997), but fail to consider wider aspects of study quality such as study design (Spake & 

Doncaster 2017). Whilst recent efforts to assessing evidence quantitatively by study design are 
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welcomed (Webb et al. 2012; Mupepele et al. 2016; Mupepele & Dormann 2017), their weights 

are relatively simplistic (e.g. simple integer scores or categories) and lack a quantitative or 

objective grounding. 

 

Our weighting system is informed by the relationships we have found between accuracy, 

precision, study design and sample size, arguably accounting for more aspects of study quality 

than weighting by sample size or inverse-variance. We have shown how our accuracy weights 

can be easily used in meta-analyses to give greater influence to studies with more accurate 

designs (Appendix S2). We have also demonstrated that our weights tend to reduce the number 

of positive and negative significant results in meta-analyses compared to using inverse-variance 

weighting (Table 4). We argue that our simulation results imply that inverse-variance weighting 

may erroneously reward studies with non-BACI designs when they have higher precision (lower 

variance), possibly leading to more significantly positive or negative results. This is problematic 

because we have shown that increasing precision of non-BACI designs often leads to biased 

estimates and not greater accuracy. Weighting by a combination of accuracy and precision 

using our weights seems more sensible given these results. 

 

Although we acknowledge that our weights only consider some aspects of study quality, 

we believe that they could be modulated using the percentage of criteria met in subject-specific 

quality checklists to incorporate more context-specific factors (e.g. size of sampling unit, 

temporal replication and internal validity; Mupepele et al. 2016; Bilotta et al. 2014). Adding extra 

components to the evidence assessment process, however, must be balanced against the effort 

expended in doing so. Our weights could also assign studies to different accuracy categories 

(Appendix S2), giving a rapid, easily interpretable way to communicate the robustness of 

evidence to decision-makers - e.g. in evidence toolkits such as Conservation Evidence 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(Sutherland et al. 2019). We welcome future research to explore how best to apply our accuracy 

weights within evidence assessment and decision-making processes. 

 

Overall, we have shown for the first time how much less accurate simpler study designs 

are compared to more complex ones, generating a new quantitative understanding of the 

relative accuracy of different designs. Our accuracy weights could also offer a powerful, yet 

versatile new approach to weighting evidence where studies use a range of different designs, 

with major implications for the future of meta-analysis and decision-making. We hope our work 

encourages greater discussion of study design by scientists, managers and policy-makers 

across ecology and demonstrates the need to tackle the serious consequences of using 

different designs to make inferences in ecology. 
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Figure and Table legends 

Table 1 - Comparison of the key features of study designs. Graphs show how designs sample 

from impact (green points) and control (blue points) sites over time, before and after an impact 

(white versus grey areas, respectively). Solid horizontal lines show the average density of sites 

measured to calculate each design’s effect size estimate. Dashed horizontal lines for CI and 

RCTs represent the pre-impact differences between the mean densities of control and impact 

sites, which can cause bias – note less difference for RCTs (with high sample size) versus CI. 

Many design variants exist – e.g. MBACI for BACI with multiple sites, R for Reference in BARI 

(Webb et al. 2012). 
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Table 2 - Definitions and summary statistics for all simulation parameters (termed ‘Sim.’) and 

empirically-derived parameters (termed ‘Emp.’; Appendix S1). Equations show how each 

parameter was calculated. For empirically-derived parameters,    refers to the average of 

sampled sites taken from 47 ecological datasets (e.g.          refers to the average of all control 

sites in the after period; Appendix S1). 

 

Fig.1 - An overview of our simulation. Step 1 shows true densities of control and impact 

sites generated in the before period (white area). Step 2 shows true densities of control and 

impact sites generated in the after period (grey area) to reflect a step-change response (using I 

and C); the true density in each time step (t) is shown (    , impact: green; and     , control: 

blue). Step 3 shows how control and impact sites (SI and SC) are sampled (nI and nC = 10) for 

both randomised and non-randomised designs. 

 

Table 3 - Equations showing effect size estimate, variance and error calculation for each study 

design using mean densities of control or impact sites in each period (e.g. AfterImpact refers to the 

mean of sampled impact sites across all time steps in the after period). For the After design, the 

effect size was calculated by finding the difference between the final time step (t=T) and the first 

time step of the after period (1).    and    refer to the number of sites and variance in that 

period (e.g.     and    
  refer to the number of impact sites and variance in the After period). 

 

Fig. 2 – Performance of designs in correctly predicting the direction of the true effect for multiple 

levels of spatial replication with equal numbers of control and impact sites (see Figures S1 and 

S2 for other combinations of sites). Fig.2A measures this in terms of whether the effect size 

estimate was positive or negative, whilst Fig.2B considers whether the 95% CIs of this estimate 

correctly fell entirely above or below zero. See Table 1 for the definition of each design. 
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Fig. 3 – Percentage of simulation repetitions in which the 95% CIs of effect size estimates 

contained the true effect (coverage probability – Fig.3A) or were either greater than or less than 

the true effect (overestimate versus underestimate – Fig.3B). In Fig.3B, underestimates are 

shown by downward triangles, whilst overestimates are shown by upward triangles. This is 

shown for multiple levels of spatial replication with equal numbers of control and impact sites 

(see Figures S4 and S5 for other combinations of sites). See Table 1 for the definition of each 

design. 

 

Fig.4 – Performance of designs measured by percentage of simulation repetitions in which a 

design’s effect size estimate was both within ±10, 30 or 50% of the true effect and had the 

correct direction. This is shown for multiple levels of spatial replication with equal numbers of 

control and impact sites (see Figure S6 for other combinations of sites). See Table 1 for the 

definition of each design. 

 

Table 4 – Comparison of outcomes for 96 summary effect sizes obtained using the accuracy 

weights proposed by this study versus conventional inverse-variance weighting. Summary effect 

sizes were extracted from 3 separate meta-analyses (see Methods). Cells show the proportion 

of effect sizes that were significantly positive, significantly negative or non-significant for both 

weighting systems. 

 


