154 research outputs found

    Critical slowing down and fading away of the piston effect in porous media

    Get PDF
    We investigate the critical speeding up of heat equilibration by the piston effect (PE) in a nearly supercritical van der Waals (vdW) fluid confined in a homogeneous porous medium. We perform an asymptotic analysis of the averaged linearized mass, momentum and energy equations to describe the response of the medium to a boundary heat flux. While nearing the critical point (CP), we find two universal crossovers depending on porosity, intrinsic permeability and viscosity. Closer to the CP than the first crossover, a pressure gradient appears in the bulk due to viscous effects, the PE characteristic time scale stops decreasing and tends to a constant. In infinitly long samples the temperature penetration depth is larger than the diffusion one indicating that the PE in porous media is not a finite size effect as it is in pure fluids. Closer to the CP, a second cross over appears which is characterized by a pressure gradient in the thermal boundary layer (BL). Beyond this second crossover, the PE time remains constant, the expansion of the fluid in the BL drops down and the PE ultimately fades away

    Universality and quantum effects in one-component critical fluids

    Full text link
    Non-universal scale transformations of the physical fields are extended to pure quantum fluids and used to calculate susceptibility, specific heat and the order parameter along the critical isochore of He3 near its liquid-vapor critical point. Within the so-called preasymptotic domain, where the Wegner expansion restricted to the first term of confluent corrections to scaling is expected valid, the results show agreement with the experimental measurements and recent predictions, either based on the minimal-substraction renormalization and the massive renormalization schemes within the Φ_d=34(n=1)\Phi\_{d=3}^{4}(n=1)-model, or based on the crossover parametric equation of state for Ising-like systems

    Fast heat transfer calculations in supercritical fluids versus hydrodynamic approach

    Get PDF
    International audienceThis study investigates the heat transfer in a simple pure fluid whose temperature is slightly above its critical temperature. We propose a efficient numerical method to predict the heat transfer in such fluids when the gravity can be neglected. The method, based on a simplified thermodynamic approach, is compared with direct numerical simulations of the Navier-Stokes and energy equations performed for CO2 and SF6. A realistic equation of state is used to describe both fluids. The proposed method agrees with the full hydrodynamic solution and provides a huge gain in computation time. The connection between the purely thermodynamic and hydrodynamic descriptions is also discussed

    Growth and Morphology of Phase Separating Supercritical Fluids

    Get PDF
    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties

    Coherent behavior of balls in a vibrated box

    Get PDF
    We report observations on very low density limit of one and two balls, vibrated in a box, showing a coherent behavior along a direction parallel to the vibration. This ball behavior causes a significant reduction of the phase space dimension of this billiard-like system. We believe this is because the lowest dissipation process along a non-ergodic orbit eliminates ball rotation and freezes transverse velocity fluctuations. From a two-ball experiment performed under low-gravity conditions, we introduce a "laser-like" ball system as a prototype of a new dynamical model for very low density granular matter at nonequilibrium steady state

    Studying Near-Critical and Super-Critical Fluids in Reduced Gravity

    Get PDF
    Critical and supercritical fluids have a variety of applications, from use as machine lubricants in high pressure or high temperature environments to the manufacturing of materials such as aerogel. The optical properties of fluids undergo rapid changes near the critical point resulting in a rapid increase in turbidity known as critical opalescence. These optical changes can be used to probe the universality of critical behavior. As a fluid approaches the critical point, the compressibility rapidly increases. In a gravitational field, this increase in compressibility leads to near-critical fluids stratifying by phase and density, making it difficult to observe the optical properties of the fluid. Therefore it becomes necessary to study critical fluids in a reduced gravity environment. The HYdrogen Levitation DEvice (HYLDE) apparatus at CEA-Grenoble was used to study cells filled with oxygen and hydrogen suspended in a magnetic field as they were gradually decreased from the critical temperature (Tc). Using shadowgraph methods, we analyzed intensity map data to determine the light transmission and turbidity of critical and near critical hydrogen and oxygen. Turbidity measurements were made for a hydrogen filled cell at light wavelengths of 465.2 nm, 519.4 nm, and 669.4 nm. The turbidity of the oxygen filled cell was measured at 400 nm, 450 nm, 500 nm, and 650 nm

    Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

    Get PDF
    Current research on supercritical water processes on board the International Space Station (ISS) focuses on salt precipitation and transport in a test cell designed for supercritical water. This study, known as the Supercritical Water Mixture Experiment (SCWM) serves as a precursor experiment for developing a better understanding of inorganic salt precipitation and transport during supercritical water oxidation (SCWO) processes for the eventual application of this technology for waste management and resource reclamation in microgravity conditions. During typical SCWO reactions any inorganic salts present in the reactant stream will precipitate and begin to coat reactor surfaces and control mechanisms (e.g., valves) often severely impacting the systems performance. The SCWM experiment employs a Sample Cell Unit (SCU) filled with an aqueous solution of Na2SO4 0.5-w at the critical density and uses a refurbished High Temperature Insert, which was used in an earlier ISS experiment designed to study pure water at near-critical conditions. The insert, designated as the HTI-Reflight (HTI-R) will be deployed in the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on the International Space Station (ISS). Objectives of the study include measurement of the shift in critical temperature due to the presence of the inorganic salt, assessment of the predominant mode of precipitation (i.e., heterogeneously on SCU surfaces or homogeneously in the bulk fluid), determination of the salt morphology including size and shapes of particulate clusters, and the determination of the dominant mode of transport of salt particles in the presence of an imposed temperature gradient. Initial results from the ISS experiments will be presented and compared to findings from laboratory experiments on the ground
    corecore