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Fast heat transfer calculations in supercritical fluids versus hydrodynamic approach

V. S. Nikolayev,1, ∗ A. Dejoan,2, † Y. Garrabos,2 and D. Beysens1

1DSM-DRFMC-Service des Basses Températures/ESEME, CEA-Grenoble, France‡
2CNRS-ESEME, Institut de Chimie de la Matière Condensée de Bordeaux,

87, Avenue du Dr. A. Schweitzer, 33608 Pessac Cedex, France
(Dated: January 25, 2016)

This study investigates the heat transfer in a simple pure fluid whose temperature is slightly above
its critical temperature. We propose a efficient numerical method to predict the heat transfer in
such fluids when the gravity can be neglected. The method, based on a simplified thermodynamic
approach, is compared with direct numerical simulations of the Navier-Stokes and energy equations
performed for CO2 and SF6. A realistic equation of state is used to describe both fluids. The pro-
posed method agrees with the full hydrodynamic solution and provides a huge gain in computation
time. The connection between the purely thermodynamic and hydrodynamic descriptions is also
discussed.

I. INTRODUCTION

In fluids near their liquid-gas critical point, the char-
acteristic size of the density fluctuations becomes larger
than the characteristic size of the molecular structure.
Consequently, the fluid behavior is ruled by fluctuations
and not by its particular molecular structure. This im-
plies that most fluids behave similarly near the critical
point (like the 3D Ising model). This universality makes
the study of near critical fluids very appealing. Due to
their very low thermal diffusivity and to their very large
thermal expansion and compressibility, the study of heat
transfer in such fluids is particularly challenging. When
such a fluid is confined in a heated cavity, a very thin
hot boundary layer develops and induces a fast expan-
sion that compresses the rest of the fluid. The result-
ing pressure waves spread at the sound velocity (i.e very
rapidly) and adiabatically compress the bulk of the fluid
which is therefore homogeneously heated. After several
sound wave periods the pressure is already equilibrated
and can be assumed to be nearly homogeneous along the
cavity. During the initial stage of heating, this process
of energy transfer, called “Piston effect” [1, 2], is much
more efficient than the usual diffusion scenario. Indeed, if
the Piston effect were absent, the bulk of the fluid would
remain at the initial temperature.
In the industrial domain, the Piston effect can be used

to transfer heat much faster than by conduction. This
feature can be readily applied to the development of heat
exchangers under microgravity conditions [3, 4] where
heat transfer by natural convection is obviously not pos-
sible.
While the physical origin of the Piston effect is well un-
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derstood, the calculations required to represent realistic
experimental conditions are difficult because the inherent
nonlinear dynamical behavior of such fluids is compli-
cated by the highly non-linear equations of state (EOS)
used to describe real near-critical fluids. Two computa-
tional approaches have been suggested for confined fluids
in absence of convection. In one of them, which we will
refer as the “thermodynamic approach” [5], the Piston
effect is taken into account by a supplementary term g,
introduced in the heat conduction equation as follows,

∂T

∂t
=

1

ρcp
∇ · (k∇T ) + g(T ), (1)

with

g(T ) =

(
1− cv

cp

)(
∂T

∂p

)

ρ

∂p

∂t
, (2)

where T is the local fluid temperature, cv(cp), the specific
heat at constant volume (pressure) per unit mass, ρ the
local density and k the thermal conductivity of the fluid.
One can note that the term g(T ) is only relevant near
the critical point where cp ≫ cv.
The fluid motions are neglected and the pressure p, as-

sumed to be homogeneous, is only a function of time t.
The pressure p is determined from the fluid mass conser-
vation and computed via the nonlinear expression [5]

∂p

∂t
= −

∫
v
(∂ρ/∂T )p ∂T/∂t dv∫

v
ρχT dv

(3)

where χT = ρ−1(∂ρ/∂p)T is the isothermal compressibil-
ity and v the volume of the fluid sample. The resolution
of (3) requires an iterative procedure for each time step.
This consists in calculating the temperature in the whole

fluid volume using Eqs. (1-2) for some trial value of p
(and thus ∂p/∂t) and determining the other thermody-
namic parameters (ρ, χT , . . .) by an EOS

Λ(p, ρ, T ) = 0. (4)

Subsequent computation of the volume integrals in
Eq.(3) gives a new value of ∂p/∂t from which the pres-
sure p is corrected. The correction step is repeated until
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convergence. This approach has been extensively used
by several groups [6, 7] in one-dimensional (1D) calcu-
lation in conjunction with the restricted cubic EOS [8]
and the finite difference numerical method. However, its
extension to higher dimensions induces a large computa-
tional effort. First, it requires a sophisticated program-
ming and, second, the computer resources rise steeply
because the thermodynamic variables have to be evalu-
ated at each grid point of the computational domain by
means of the iterative procedure to solve Eq. (3).
Teams with expertise in theoretical hydrodynamics

have developed a rigorous hydrodynamic approach [1] in
which the Navier-Stokes and energy equations are cou-
pled with the EOS. This set of equations has been solved
analytically in 1D by asymptotic matching techniques [9]
and also by direct numerical simulation (DNS) [10] via
the finite volume method [11] both in 1D and 2D. For the
sake of simplicity, the van der Waals EOS has been used
in all these works. Although this simple EOS provides
satisfactory qualitative results, accuracy can only be en-
sured by using a realistic EOS. However, as shown in the
present study, inserting a realistic EOS into the hydrody-
namic equations leads to a much more difficult computa-
tional task, which involves prohibitively large calculation
times. For instance, to reach the final steady state in
one of the 1D runs carried out for the cubic EOS in the
present study, one requires about two months on a 800
MHz PC.
The purpose of this article is twofold. We first formu-

late an approximate method which is both simple and
rapid (e.g., the same calculation cited above required only
20s !) and then compare it with the DNS formalism. Sec-
ond, since this work is the first one to use a realistic EOS
for the DNS, we describe in detail the hydrodynamic ap-
proach for the near-critical fluids with a general EOS. We
expect that this complete and unified description may be
useful for the scientific community, as the hydrodynamic
method is dispersed over many (some of them not easily
accessible) publications.
The article is organized as follows. In Sec. II we de-

scribe the fast calculation method. Sec. III presents the
hydrodynamic approach. Sec. IV deals with the compar-
ison between both approaches. The conclusions are given
in Sec. V.

II. FAST CALCULATION METHOD

The method is based on the thermodynamic approach,
i.e. on the energy equation (1). However, a differ-
ent pressure equation will be used instead of Eq. (3).
While the latter equation integrates over the fluid vol-

ume, we are looking for a pressure equation that in-
tegrates only over the boundaries of the fluid domain.
Such an equation would accelerate the iterative proce-
dure. However, its advantage would not be decisive with-
out an appropriate numerical method for Eq. (1) that
should only require computation of the thermodynamic

variables at the boundaries. Such a numerical method is
called Boundary Element Method (BEM) and is broadly
used in heat transfer problems. The BEM is expounded
in Appendix A.
Several simplifications have to be introduced before

presenting the formulation of the energy and pressure
equations used in the present method. As stated in the
introduction, we are mainly interested in the description
of the early stages of the heating, i.e. on times of the
order of the Piston effect time scale [12]. In this regime,
the thermodynamic quantities cp, cv, k, . . . are constant
in the bulk of the fluid and only vary in the very thin hot
and cold boundary layers. Thus, the following assump-
tions can be made:
(i) The spatially varying parameters (cp, cv, k, etc.) in

Eq. (1) can be replaced by the spatially homogeneous
time dependent values which will be denoted hereafter by
an over-bar (e.g. c̄p). These values are calculated with
the EOS using density 〈ρ〉 (where the brackets indicate
the spatial average) and the pressure p = p(t). We note
that the density 〈ρ〉 is constant as the system is closed.
This assumption is equivalent to the statement that

all these quantities should be calculated using the tem-
perature value T̄ = T̄ (t) obtained from the EOS for the
pressure p and the density 〈ρ〉. The quantities calculated
in such a way correspond to the over-bar variables men-
tioned above . In general, for a thermodynamic quantity
X , X̄ 6= 〈X〉.
(ii) During the system evolution, the thermodynamic

quantities are supposed not to vary sharply in time.
(iii) The initial temperature T0 is uniform.
The assumption (iii) is made for simplicity and can be

relaxed if necessary. However, the assumptions (i) and
(ii) are essential for this approach.
In the following section we formulate the energy and

pressure equations that govern the kinetics of the super-
critical fluid in a reduced gravity environment.

A. Energy equation

Using the assumption (i) and the constancy of 〈ρ〉, one
can write

dp = (∂p/∂T )ρdT̄ (5)

so that the term (2) reduces to

ḡ(T̄ ) =

(
1− c̄v

c̄p

)
dT̄

dt
, (6)

and Eq. (1) can be reduced to the equation

∂ψ

∂t
= D̄∇2ψ. (7)

The thermal diffusion coefficient D̄ = k̄/〈ρ〉c̄p depends
on T̄ i.e. on time t only, and

ψ(~x, t) = T (~x, t)− T0 − E(T̄ ). (8)
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with ~x the position vector and

E(T̄ ) =

T̄∫

T0

(
1− c̄v

c̄p

)
dT̄ . (9)

The initial condition is ψ|t=0 = 0 because according to
the assumption (iii),

T̄ |t=0 = T0. (10)

Finally, a known dependence of D̄ = Dd f(T̄ ), where
Dd is a dimensional constant and f is a non-dimensional
function, allows the time t to be replaced by a new inde-
pendent variable τ defined by the equation

dτ

dt
= f(T̄ ), (11)

whose initial condition can be imposed as τ |t=0 = 0.
Since T̄ is a function of t only, this initial value problem
is fully defined. The substitution of Eq. (11) into Eq. (7)
results in the linear diffusion problem with the constant
diffusion coefficient Dd

∂ψ

∂τ
= Dd∇2ψ,

ψ|τ=0 = 0.
(12)

It can be solved with BEM as shown in Appendix A.
Usually, the ”temperature step” boundary condition

has been applied for 1D problems. This heating process
corresponds to a fluid cell, initially at a uniform temper-
ature, which is submitted to a sudden increase of temper-
ature at one of its boundaries, while the other is kept at
the initial temperature (Dirichlet boundary conditions).
This heating condition is physically unrealistic because
the initial value for the heat flux at the heated bound-
ary is infinite. Instead, in this work we use Neumann-
Dirichlet boundary conditions: a heat flux qin is imposed
at one of the boundaries, while the initial temperature T0
is maintained at the other boundary.

B. Boundary form of the pressure equation

Let us begin by writing the linearized relationship,
valid under the assumption (ii):

δρ =

(
∂ρ

∂s

)

p

δs+

(
∂ρ

∂p

)

s

δp, (13)

where s is the fluid entropy per unit mass and δ stands
for the variation of the thermodynamic quantity during
the time interval δt. From mass conservation it follows
〈δρ〉 = 0, and, from the pressure homogeneity that 〈δp〉 =
δp.
By averaging Eq. (13) one obtains

〈
(
∂ρ

∂s

)

p

δs〉+ 〈
(
∂ρ

∂p

)

s

〉 δp = 0. (14)

The use of appropriate thermodynamic relationships
leads to

δp =

〈
χT

cp
T
(
∂p
∂T

)
ρ
ρδs

〉

〈
χT

cp
ρcv

〉 . (15)

In order to use the second law of thermodynamics

〈ρδs〉 = δQ

vT̄
, (16)

where δQ is the total change of the amount of heat of
the fluid, one needs to separate out the averages of the
form 〈Y Z〉 in Eq. (15). Under the assumption that Y
(or Z) does not vary sharply over the fluid volume, the
following approximation holds (see Appendix C):

〈Y Z〉 ≈ 〈Y 〉〈Z〉. (17)

Among the quantities that appear in Eq. (15), only χT
and cp vary sharply near the critical point and could
thus vary strongly across the fluid volume. However,
only their ratio, which remains constant near the crit-
ical point, enters Eq. (15). Hence, the average of this
ratio as well as the remainder averages of slowly varying
quantities can be separated. By using the expression for
the total heat change rate

δQ

δt
=

∫

A

k
∂T

∂~n
dA, (18)

where the r.h.s. is simply the integrated heat flux sup-
plied to the fluid through its boundary A (with ~n the
external normal vector to it), one gets to the final ex-
pression

dT̄

dt
=

1

〈ρ〉vcv

∫

A

k
∂T

∂~n
dA. (19)

In the fast calculation method, Eq. (19) plays the role of
the pressure equation (3). Equation (19) is both substi-
tuted directly into Eq. (6) and solved to get the temper-
ature T̄ using the initial condition (10). The obtained
value for T̄ is used to solve Eq. (11) and to calculate all
the fluid properties. Note that T̄ should not be confused
with T from Eqs. (18, 19). The spatially varying fluid
temperature T has to be calculated with Eqs. (8,12).
Substituting T̄ by 〈T 〉, Eq. (19) coincides with the re-

sult of Onuki and Ferrell [2] which was derived by a differ-
ent way. Eq. (19), written in terms of 〈T 〉, was employed
recently [13, 14] to simulate the gravitational convection
in 2D by the finite difference method. However, the finite
difference numerical method is not the most efficient for
the computation of heat transfer problems.

III. HYDRODYNAMIC APPROACH

Analytical analysis as well as direct simulations were
carried out in previous works. Bailly and Zappoli [15]
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have developed a complete hydrodynamic theory of den-
sity relaxation after a temperature step at the bound-
ary of a cell filled with a nearly supercritical fluid in
microgravity conditions. In [15] they describe the dif-
ferent stages of the fluid relaxation towards its complete
thermodynamic equilibrium, covering the acoustic, Pis-
ton effect and heat diffusion time scale. The analytical
approach leans on the matched asymptotic expansions to
solve the 1D Navier-Stokes equations for a viscous, low-
heat-diffusing, near-critical van der Waals fluid (see [9]
and [15]). The DNS of the Navier-Stokes equations were
performed in 1D and 2D geometries. Some of them take
into account gravity effects, as for example, the interac-
tion of a near-critical thermal plume with a thermostated
boundary [16]. Numerical results are also available on
thermo-vibrational mechanisms [17].

To date the hydrodynamic approach has been solved
for the classical, van der Waals, EOS. This EOS allows a
considerable reduction in computational time when com-
pared to the restricted cubic EOS. However, it does not
provide a correct description of the real fluids. In par-
ticular, it fails to predict the critical exponents for the
divergence laws of the thermodynamic properties. In the
present work we use a more realistic cubic EOS to de-
scribe the fluid behavior in the near-critical region. Here-
after, we describe the methodology suitable for a general
EOS.

A. Problem statement

The hydrodynamic description leads to the following
set of equations

dρ

dt
+ ρ∇ · ~u = 0, (20)

ρ
d~u

dt
= −∇p+ µ∇2~u, (21)

ρ
de

dt
= ∇ · (k∇T )− p∇ · ~u+Φ, (22)

where e is internal energy per unit mass, ~u = (u1, u2, u3)
is the fluid velocity at the point ~x = (x1, x2, x3),

Φ = µ
∑

i,j

(
∂ui
∂xj

∂uj
∂xi

+
∂ui
∂xj

∂ui
∂xj

− 2

3

∂ui
∂xi

∂uj
∂xj

)

is the dissipation function due to the shear viscosity µ
(the bulk viscosity is neglected). The operator d/dt is
defined as

d

dt
=

∂

∂t
+ ~u · ∇. (23)

The set of equations (20,21,22) is closed by adding the
EOS (4).

B. cv-formulation

In the DNS, the energy equation (22) is re-written in
terms of temperature T . This is achieved by expressing
the internal energy as a function of density and tempera-
ture so that one can make use of the well known relation

de

dt
=

1

ρ2

[
p− T

(
∂p

∂T

)

ρ

]
dρ

dt
+ cv

dT

dt
. (24)

Then, by substituting the Eqs. (20) and (22) into Eq. (24)
one obtains:

ρcv
dT

dt
= ∇ · (k∇T )− T

(
∂p

∂T

)

ρ

∇ · ~u+Φ. (25)

Note that Eq. (25) involves cv and not cp as in the ther-
modynamic Eq. (1). The “cv-formulation” is preferred
to the “cp-formulation” because the much weaker near-
critical divergence of cv (in comparison to cp) allows cv
to be assumed constant.
The boundary conditions for the Navier-Stokes equa-

tions are ~u = 0 at the walls. The initial conditions are
given by ~u(t = 0) = 0. For the energy equation (25) the
boundary and initial conditions are identical to those ap-
plied in the energy equation (1) (cf. Sec. II). The values
of the physical parameters used in the simulations are
discussed in Appendix B.

C. Acoustic filtering

Heat transfer in supercritical fluid involves three char-
acteristic time scales [12, 18]: the acoustic time scale
defined by ta = L/c0 (where c0 is the sound velocity and
L is the cell size), the diffusion time scale tD = L2/D
(D being the thermal diffusivity) and the Piston Effect
time scale defined by tPE = L2/[D(cp/cv − 1)2], with
ta ≪ tPE < tD. The present study is mainly concerned
with time of the same order as the Piston effect time
scale so that a fine description of the acoustic phenomena
is not needed. This suggests that one can filter out the
acoustic motions of the set of Eqs. (4,20,21,25) and retain
only their integrated effects without altering the physics
of our problem. The removal of the acoustic motions
is achieved by applying the acoustic filtering method [19]
which is broadly used in the computation of the low Mach
number compressible Navier-Stokes equations because it
avoids numerical instabilities when time steps, ∆t >> ta,
are used in the simulations. The following presents the
main points of the acoustic filtering method.
The equation of momentum is first rewritten by choos-

ing the sound velocity c0 as the reference velocity scale
and L/u0 as the reference time scale (here u0 is the
characteristic velocity of large scale fluid motions, in
our case u0 = L/tPE). Using this time and velocity
scale the Mach number Ma = u0/c0 appears in the non-
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dimensional momentum equation as follows,

ρ

[
∂~u

∂t
+Ma−1(~u · ∇)~u

]
= −Ma−1pc

c20ρc
∇p+ 1

Re
∇2~u, (26)

where Re = ρcu0L/µ is the Reynolds number and the
density and pressure are non-dimensionalized by the crit-
ical density ρc and critical pressure pc taken as the ref-
erence values. For small Mach numbers, one can express
the fluid variables as series of Ma,

~u = Ma[~u(0) +Ma2~u(1) + o(Ma2)], (27)

p = p(0) +Ma2p(1) + o(Ma2), (28)

While ~u in the l.h.s. of Eq. (27) is non-dimensionalized
with c0, the term in the square brackets defines the ve-
locity non-dimensionalized with u0. This explains the
factor Ma in Eq. (27). The density and temperature are
expanded like p in Eq. (28). By substituting the series
(27, 28) into Eq. (26) and neglecting the terms of or-
der O(Ma), one obtains ∇p(0) = 0, which means that
p(0) depends on time only. By retaining O(Ma) terms
in Eqs. (20,25,26) and O(1) terms in the EOS (4), one
obtains the final (dimensional) form for the governing
equations:

dρ(0)

dt
= −ρ(0)∇ · ~u(0), (29)

ρ(0)
d~u(0)

dt
= −∇p(1) + µ∇2~u(0), (30)

ρ(0)c(0)v
dT (0)

dt
= −T (0)

(
∂p

∂T

)

ρ

∇ · ~u(0) +

∇ · (k∇T (0)), (31)

Λ(p(0), ρ(0), T (0)) = 0, (32)

where (pc/c
2
0ρc)p

(1) is replaced by p(1) for the sake of
compactness. The pressure term p(1) has to be inter-
preted as the dynamic pressure that makes the veloc-
ity field satisfy the continuity equation (29). This term
reflects the contribution of the acoustic waves averaged
over several wave periods to the total pressure field. One
notes that the velocity scale c0 is not present any more in
Eqs. (29-32) which was the main purpose of the acoustic
filtering.
The assessment of p(0) requires one more equation to

close the set (29-32). This additional equation expresses
the mass conservation:

1

v

∫

v

ρ(0)dv = 〈ρ〉, (33)

where 〈ρ〉 is a known constant.
In the following, the superscript (0) is dropped to con-

form to the notation of Sec. II.

D. Numerical procedure

For the time integration, the first order Euler scheme
is used. Equations (29-31) are solved by the iterative

SIMPLER algorithm and by applying the Finite Volume
Method (FVM, see Appendix D) on each grid cell of the
1D cell. Near the walls the mesh is refined to properly
resolve the very thin thermal boundary layers.
In the present work the thermodynamics variables are

determined using the parametric EOS [8]. This uses two
parameters r and θ which both depend on temperature
T and density ρ. Therefore, one needs to solve two equa-
tions

Λ1(ri, θi, Ti) = 0
Λ2(ri, θi, p) = 0

(34)

instead of one Eq. (4) for each volume element i and time
step.
The whole numerical procedure consists in solving by

the Newton-Raphson method, at each time step, a set
of equations that includes Eqs. (34), written for each
volume element and Eq. (33). This makes a system of
2N+1 equations to resolve, N being the total number of
the volume elements. The local temperature Ti is given
by the resolution of Eqs. (29-31) at each iteration of the
SIMPLER algorithm for each time step, as described in
Appendix D. For each value Ti the 2N + 1 (ri, θi, p)
variables are computed via the system (34).

IV. RESULTS AND DISCUSSION

A brief analysis comparing the cp and cv formulations
(1) and (31) of the energy equation allows us to gain more
insight into the relation between the two approaches.
Formally, Eq.(1) and Eq.(31) become equivalent if the
advection term

(~u · ∇)T (35)

is added to l.h.s. of Eq. (1). However, the equivalence
of the two forms under which the pressure work appears
(see second term of the l.h.s of Eq.(1) and Eq.(31)) is not
trivial and deserves to be detailed. At the early stage
of the heating (t < tPE) the velocity at the front of
the cold boundary layer being very small, the velocity
can be assumed to decrease linearly in the bulk cell as
∂u/∂x ≃ −umax/L, where umax is the maximum veloc-
ity located at the front of the hot boundary layer and x
the distance from the hot wall to the cold wall. The rate
of temperature increase due to the pressure contribution
in Eq. (31) can thus be written as follows,

− T

ρcv

(
∂p

∂T

)

ρ

∇ · ~u =
T

ρcv

(
∂p

∂T

)

ρ

umax
L

(36)

By using the expression [12],

umax =
1

T

(
∂T

∂p

)

ρ

δQ

Aδt
, (37)

and Eqs. (18,19) one concludes that the term (36) is
equivalent to (6) near the critical point where cp ≫ cv.
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FIG. 1: Comparison of two approaches for SF6 at 1K above Tc

(reduced temperature 3.1·10−3), qin = 2 W/m2 and 〈ρ〉 = ρc.
Solid curves are the DNS results and the dotted curves are the
new method results. (a) Spatial variation of the temperature
at different times. (b) Time evolution of the temperature at
the cell center and of the flux at the exit of the cell. The value
of tPE = 7.73 s obtained with our EOS is shown by an arrow.

One can note that in the hydrodynamic approach, the
pressure work is directly related to the mass transfer from
the hot boundary layer to the bulk fluid via the gradi-
ent velocity. It is then very important to asses properly
the effect of the velocity field in order to compare the
fast calculation and hydrodynamic methods. The above
analysis has shown that the expressions of the pressure
work is equivalent for both methods. Hence, the remain-
ing potential interaction between the velocity and energy
fields can manifest itself only through the advection term
(35). This term is only relevant when, at the same spot
of the fluid, both the fluid velocity and the temperature
gradient are large. At the small times, t < tPE , the tem-
perature gradients are confined very near the wall where
the velocity remains small [18]. Later on, the velocity
maximum shifts to the center of the cell where the tem-
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FIG. 2: Comparison of the two approaches for CO2 at 1K
above Tc (reduced temperature 3.3 · 10−3), qin = 2 W/m2

and 〈ρ〉 = ρc. Solid curves are the DNS results and the dotted
curves are the new method results. (a) Spatial variation of
the temperature at different times. (b) Time evolution of the
temperature at the cell center and of the flux at the exit of
the cell. The value of tPE = 3.45 s obtained with our EOS is
shown by an arrow in the insert that presents the short time
evolution.

perature gradient is small. At very large times, t > tD,
the Piston effect is not efficient and the velocity tends
to zero. We thus do not expect a strong influence of the
advection effects on the temperature field. This will be
confirmed by the results presented below. Note that the
advection term cannot be neglected when the flux distri-
bution over the heater surface is highly inhomogeneous.
Hot jets [26] can be generated in this case.

The calculations have been performed for two fluids,
CO2 and SF6, confined in a cell of length L = 5mm. The
initial temperatures 1K and 5K above the critical point
have been considered for CO2. The computations related
to SF6 concern only the initial temperature 1K above the
critical point. The cell boundary situated at x = 0 has
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been submitted to the constant heat flux qin = 2W/m2

(for T0 = Tc+1K) and qin = 9.5W/m2 (for T0 = Tc+5K)
and the opposite boundary has been maintained at the
constant temperature T (x = L) = T0.
The time evolution of the temperature profiles and the

temperature at the cell center Tcenter = T (x = L/2) as

well as the heat flux qout = −k ∂T (x=L)
∂x are compared and

analyzed. In the case of CO2, the time evolution covers
not only the Piston effect time scale tPE but also the
large diffusion time scale.
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FIG. 3: Comparison of two approaches for CO2 at 5K above
the critical temperature (reduced temperature 1.6 · 10−2),
qin = 9.5 W/m2 and 〈ρ〉 = ρc. Solid curves are the DNS
results and the dotted curves are the new method results.
According to our EOS, tPE = 25.67 s. (a) Spatial variation
of the temperature at different times. (b) Time evolution of
the temperature at the cell center and of the flux at the exit
of the cell.

The set of Figs. 1, 2, and 3 exhibit a very good qualita-
tive agreement between the DNS and the fast calculation
results. The thin boundary layers and the homogeneous
enhancement of the temperature in the center cell are
very well predicted. The quantitative comparison sets

out two behaviors. On one hand, the flux qout appears to
fit very well with the DNS over the full time evolution,
at the time scale tPE as well at the time scale tD, see
Figs. 2b, 3b. On the other hand, the temperature at the
cell center Tcenter tends to be lower than the DNS data.
This discrepancy increases with time and is larger when
the temperature is closer to the critical temperature (see
Fig. 2b and Fig. 3b). Both behaviors can be explained
by considering how the thermal conductivity k is esti-
mated in each method. In the hydrodynamic approach
k is determined locally, whereas the fast calculation uses
the spatial average value of k. Thus, keeping in mind
that the thermal conductivity diverges when approach-
ing the critical point, the increment in temperature near
the heating surface tends to be smaller in the new method
than in the DNS (see Fig. 2a). At the opposite surface
the temperature is fixed at the initial temperature and is
closest to the bulk temperature so that the effect of aver-
aging k is less influent in this region. One can note that
the thermal diffusivity can be computed locally in the
fast calculation method by applying the Kirchhoff sub-
stitution of the dependent variable ψ (defined by Eq. (8))

by φ =
∫ ψ
0
k(ψ)dψ.

A physical interpretation of the temperature T̄ , which
was formally introduced in Sec. II, can now be given.
Indeed, since in the fluid bulk (i.e., arround the center
of the cell) ∂T

∂x = 0 at t < tPE , according to Eq. (1)

we have ∂Tcenter/∂t = ḡ(T̄ ). As near the critical point
cp ≫ cv, Eq. (6) provides ḡ(T̄ ) ≈ ∂T̄ /∂t. Finally, one
can conclude that T̄ ≈ Tcenter. In other words, T̄ can be
considered as the bulk temperature.
Aa a further remark, we note that for 1D the Eq. (A1)

could have been solved analytically by series expansion.
Nevertheless, we prefer the use of the BEM for its gen-
erality and its possible extension to higher dimensions.
We note that in 2D and 3D the BEM remains advanta-
geous in resolving linearized problems when compared to
other numerical methods. Its success is based on several
factors. One of them is its numerical stability: the nu-
merical solution of the integral equations is much more
stable than that of the differential equations and allows
the use of larger time steps. Another advantage consists
in the possibility of determining analytically the BEM
coefficients, Eqs. (A6, A7). For 2D configurations, the di-
agonal coefficients GFF and HFF (which have the largest
absolute value and thus are the most relevant) can be cal-
culated analytically. The semi-analytical integration can
be used for the remaining coefficients [22, 23].

V. CONCLUSIONS

In this work we propose a thermodynamic method for
describing the heat transfer in supercritical fluids in ab-
sence of gravity effects. The method has been compared
with the solution of the full hydrodynamic equations,
showing an excellent agreement. In general, a thermo-
dynamic approach leans on the possibility of expressing
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the pressure work independently of the velocity field. If
so, the transfer of momentum does not need to be consid-
ered, allowing a large reduction in computational time.
As an example, in calculations carried out for CO2 and
SF6, the present thermodynamic method within minutes
provided the complete evolution of the heat transfer pro-
cess, while the direct numerical simulation of the full hy-
drodynamic equations required weeks of CPU time.
Compared with previous thermodynamic methods [5],

the fast calculation method presented here does not re-
quire the evaluation of the variables at each cell of the
computation domain. This fact ensures a much better
performance. Moreover, the proposed method offers the
possibility to explicitly include the thermal behaviour of
the material vessel containing the fluid by taking into ac-
count the heat conduction along the solid walls, see Ref.
[4].
The direct numerical simulation of the flow has been

used to analyze the validity of the method proposed here.
The accuracy of the latter approach is explained by the
fact that the advection of energy remains negligible.
For the sake of completeness, we have also presented

a detailed description of the hydrodynamic approach.
While it has been used for about a decade, some parts of
its description for a general equation of state are either
dispersed over many literature sources or not published
at all in the accessible literature.
Concerning the future development of the present re-

search, we plan to extend the fast calculation method
to two- and three-dimensional problems. Finally, we in-
tend to use this method to investigate the heat transfer
in two-phase fluids.
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Appendix A: BEM for the diffusion equation

In this Appendix we use the traditional notation, so
that D and t correspond to Dd and τ of Eq. (12). It can
be shown [21] that the linear diffusion problem

∂ψ

∂t
= D∇2ψ

ψ|t=0 = 0
(A1)

with the constant thermal diffusion coefficientD is equiv-
alent to the boundary integral equation

D

t∫

0

dt′
∫

A

[
G(~x− ~x′, t− t′)

∂x′ψ(~x′, t′)

∂~n
−

ψ(~x′, t′)
∂x′G(~x− ~x′, t− t′)

∂~n

]
dx′A =

1

2
ψ(~x, t). (A2)

The integration is performed over the surface A of the
fluid volume v, ~x ∈ A. The outward unit normal to A
is ~n. The Green function G for the infinite space for the
equation adjoint to Eq. (A1) reads

G(~x, t) = (4πDt)−d/2 exp

(
− |~x|2
4Dt

)
, (A3)

where d is the spatial dimensionality of the problem (A1).
Only the 1D case with the space variable x ∈ (0, L)

is considered below, the 2D counterpart being described
elsewhere [22, 23]. For d = 1, A degenerates into two
points, and Eq. (A2) reduces to two equations

2D

t∫

0

dt′

[
G(x − x′, t− t′)

∂ψ

∂x′
−

ψ(x′, t′)
∂G(x − x′, t− t′)

∂x′

]∣∣∣∣
x′=L

x′=0

= ψ(x, t) (A4)

written for x = 0, L. A variety of numerical methods can
be applied to solve Eqs. (A4). The simplest way is to
present the integral over (0, t) as a sum of the integrals
over (tf−1, tf ), f = 1..F with t0 = 0 and tF = t and as-
sume a constant values ψf = ψ(tf ) and ψ

′
f = ∂ψ(tf )/∂x

over each of these intervals. Eqs. (A4) will reduce then to
the set of 2Fm (tFm

is the maximum desired calculation
time) linear equations

F∑

f=1

[ψf (0)HFf (x) − ψf (L)HFf (x− L)−

ψ′
f (0)GFf (x) + ψ′

f (L)GFf (x− L)] =

ψFi/2, x = 0, L; F = 1, Fm (A5)

for 4Fm variables ψf , ψ
′
f (0, L), 2Fm of them being de-

fined by the boundary conditions. The coefficients in
these equations can be calculated analytically:

GFf (x) = D

∫ tf

tf−1

G(x, tF − t′)dt′ =

|x|
2

[
erfc(

√
u)− exp(−u)√

uπ

]∣∣∣∣
x2

4D(tF −tf )

x2

4D(tF −tf−1)

(A6)

and

HFf (x) = −D
∫ tf

tf−1

∂G(x, tF − t′)

∂x
dt′ =

− sign(x)

2
erfc(

√
u)

∣∣∣∣
x2

4D(tF −tf )

x2

4D(tF −tf−1)

, (A7)

where

erfc(x) =

∫ ∞

x

exp(−u2)du,
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is the complementary error function and

sign(x) =

{
1, x > 0,

−1, x < 0.

One needs to mention that the case x = 0 is special:
HFf (0) = 0 for all f and F and

GFf (0) =
√
D0/π(

√
tF − tf−1 −

√
tF − tf ).

The set of linear equations (A5) can be solved by any
appropriate method, e.g. by the Gauss elimination.

Appendix B: The fluid properties

The thermal conductivity k is deduced from the ther-
mal diffusivity

D = D1

(
T − Tc
Tc

)ϕ1

+D2

(
T − Tc
Tc

)ϕ2

(B1)

and the constant pressure specific heat at critical density
ρc, k = Dρccp|ρc . Coefficients values for CO2 are:

D1 = 5.89184×10−8 m2/s, D2 = 7.98068×10−7 m2/s,
ϕ1 = 0.67 and ϕ2 = 1.24.

Coefficients values for SF6 are:

D1 = 6.457 × 10−7 m2/s, D2 = 0, ϕ1 = 0.877 and
ϕ2 = 0.

The specific heat at constant pressure is calculated by
using the thermodynamic relationship

cp = cv + T

(
∂p

∂T

)2

ρ

χT (B2)

The isothermal compressibility coefficient χT and the
specific heat at constant volume are given by the re-
stricted cubic model [8]. For the reference hydrodynamic
DNS we used a constant cv value calculated for the initial
value of temperature and density. We used a constant
value for the viscosity µ: 3.74 · 10−5 Pa·s for SF6 and
3.45 · 10−5 Pa·s for CO2.

Appendix C

According to the integral theorem about the mean
value [24], there is always a point ~xm ∈ v so that

∫

v

Y (~x)Z(~x)d~x = Y (~xm)

∫

v

Z(~x)d~x (C1)

if the functions Y, Z are continuous. When the spatial
variation of Y in v is small, 〈Y 〉 ≈ Y (~xm) and Eq. 17
stems from Eq. (C1).

Appendix D: Application of the Finite Volume
Method (FVM) and SIMPLER algorithm

According to the FVM, the calculation domain is di-
vided into a number of non-overlapping control volumes
so that there is one control volume surrounding each grid
point. The differential equations are integrated over each
control volume. The attractive feature of this method is
that the integral balance of mass, momentum, and en-
ergy is exactly satisfied over any control volume (called
below the cell for the sake of brevity), and thus over the
whole calculation domain. The integral formulation is
also more robust than the finite difference method for
problems which present strong variations of properties
observed in a near-critical fluid [10, 20]. The equations
are resolved on a staggered grid. This means that the
velocity is computed at the points that lie on the faces
of the cell while the scalar variables (pressure, density
and temperature) are computed at the center of the cell.
This choice is made to avoid pressure oscillations in the
computations [11]. For the time discretization, the first
order Euler scheme is used. For the sake of simplicity and
clarity we present the finite volume method for the 1D
generalized transport equation for a variable Y (where Y
can be substituted by either u or T )

∂ρY

∂t
+
∂ρuY

∂x
=

∂

∂x

(
Γ
∂Y

∂x

)
+ S (D1)

where Γ denotes the generalized diffusion coefficient and
S the generalized source term (volume forces). Integrated
over the ith cell of the length δx, Eq. (D1) takes the form

ρPYP − ρpPY
p
P

∆t
∆x+ Je − Jw = SP∆x (D2)

where the superscript p denotes the value on the previous
time step, the subscript P represents the center of the
cell, the subscripts e and w its “east” and “west” face
respectively. The calculation of the flux

J = ρuY − Γ
∂Y

∂x
(D3)

on the faces requires the knowledge of Y and ρ at the
centers of two neighboring “East” and “West” cells de-
noted by the capital letters E and W. Their values at the
faces can be found by linear interpolation between their
values at the centers, e.g. Ye = 0.5(YP +YE) if the nodes
are equidistant.
The continuity equation integrated on the control vol-

ume is given by:

ρP − ρpP
∆t

∆x+ Fe − Fw = 0 (D4)

with F = ρu. When multiplying Eq. (D4) by YP and
subtracting the result from Eq. (D2), one obtains the
equation

ρpP∆x

∆t
(YP − Y pP ) + (Je − YPFe)− (Jw − YPFw) = SP∆x

(D5)



10

that can be rewritten in the following form

aPYP = aWYW + aEYE + b (D6)

The tridiagonal set of linear equations (D6) with respect
to YP is solved by the Thomas algorithm [25]. The stencil
coefficients aP , aW et aE depend on the discretization
scheme. Their general expression is

aW = BwAw +max(−Fw, 0),
aE = BeAe +max(Fe, 0),
aP = aW + aE + ρpP∆x/∆t,
b = SP∆x + ρpPY

p
P∆x/∆t,

(D7)

where B = Γ/∆x. We use the “power law scheme” [11]
that requires

Ai = max

[
0,

(
1− 0.1|Fi|

Bi

)5
]
, i = e, w.

The set (D6) should be written and solved both for the
velocity and the temperature. While the above scheme
can be directly applied for the temperature case, the cou-
pling of the velocity and the pressure p(1) (which is de-
fined implicitly by the continuity equation) requires a
special treatment for the velocity equation as described
below.
The non-dimensionalized and discretized Navier-

Stokes equation (30)

aeue =
∑

anbunb + (p
(1)
P − p

(1)
E ) + b, (D8)

where the subscript nb denotes the neighbors of the point
e, can be solved only when the pressure field is given. Un-
less the correct pressure field is employed, the resulting
velocity field will not satisfy the continuity equation. We
use the iterative SIMPLER algorithm [11] to couple the
velocity and the pressure fields. This algorithm is based
on successive corrections of the velocity field and pres-
sure field at a given time step. The velocity and pressure
variables are decomposed as follows:

u = u∗ + u′,
p(1) = p(1)∗ + p(1)′,

(D9)

where the asterisk denotes the guesses and prime the cor-
rections. The steps of the SIMPLER algorithm are the
following:

1. Start with a guessed velocity field.

2. A pseudo-velocity û (without taking into account
the pressure gradient) is first computed and is de-
fined as

ûe =

∑
anbunb + b

ae
(D10)

where unb represents the neighbor velocities. û sat-
isfies

ue = ûe +
p
(1)∗
P − p

(1)∗
E

ae
. (D11)

3. Compute the pressure p(1)∗ whose equation is
deduced by applying the divergence operator to
Eq. (D11) and using the continuity equation (D4):

(
ρw
aw

+
ρe
ae

)
p
(1)∗
P =

ρw
aw
p
(1)∗
W +

ρe
ae
p
(1)∗
E +

ρpP − ρP
∆t

∆x− ρeûe + ρwûw. (D12)

4. Solve Eq. (D8) with p(1)∗ used for p(1) and thus
obtaining u∗.

5. Compute p(1)′ whose equation is obtained analo-
gously to Eq. (D12) from

ue = u∗e +
(p

(1)′
P − p

(1)′
E )

ae
. (D13)

It takes the form

(
ρw
aw

+
ρe
ae

)
p
(1)′
P =

ρw
aw
p
(1)′
W +

ρe
ae
p
(1)′
E +

ρpP − ρP
∆t

∆x− ρeu
∗
e + ρwu

∗
w. (D14)

6. Calculate the velocity u using Eq. (D13). Do not
correct the pressure p(1), p(1)′ is used to correct only
the velocity field, the pressure being computed by
Eq. (D14).

7. Solve the energy equation for T using the obtained
u values.

8. Calculate the density distribution and p(0) via
Eqs. (33,34).

9. Return to step 2 and repeat until the converged
solution is obtained.

It has to be noted that whereas the fractional step PISO
algorithm [10] is successful in resolving the equations (29-
32) on the acoustic time scale, it is not the case when the
acoustic filtering method is used. Due to the different
meanings of pressure (see the subsection III C) in the
momentum equation (involving p(1)) and in the energy
equation (involving p(0)), it appears that only an itera-
tive algorithm can correctly couple the thermodynamic
field and the velocity field, the PISO algorithm leading
to unstable solutions.
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