

American Society for Space and Gravitational Research Nov. 3rd – Nov. 8th, 2013

Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

Michael C. Hicks¹, Uday G. Hegde², Yves Garrabos³, Carole Lecoutre³, Bernard Zappoli ⁴

¹ NASA - Glenn Research Center (NASA - GRC)
 ² National Center for Space Exploration Research (NCSER)
 ³ Institute of Condensed Matter Chemistry of Bordeaux (ICMCB)
 ⁴ Centre National d'Etudes Spatiales (CNES)

<u>SCWM - International Research Team</u>

Yves Garrabos ESEME¹/ ICMCB²/ CNRS³ (Bordeaux, France)

Bernard Zappoli CNES 4 (Toulouse, France)

Carole Lecoutre ESEME¹/ ICMCB²/ CNRS³ (Bordeaux, France)

Daniel Beysens ESEME¹ / CEA⁶ / ESPCI-PMMH (Paris, France)

Uday Hegde NCSER⁵ (Cleveland, USA)

Michael Hicks NASA-GRC⁷ (Cleveland, USA)

<u>SCWM – Project Manager</u>

Gabriel Pont CNES 4 (Toulouse, France)

¹ ESEME ... Equipe commune CEA - CNRS du Supercritique pour l'Environnement, les Matériaux et l'Espace"

² ICMCB ... Institut de Chimie de la matière condensée de Bordeaux

³ CNRS ... Centre national de la recherche scientifique

⁴ CNES ... Centre National d'Etudes Spatiales

⁵ NCSER ... National Center for Space Exploration Research

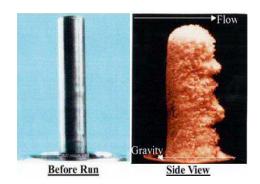
⁶ CEA ... Commissariat à l'Energie Atomique ⁷ NASA-GRC ... NASA – Glenn Research Center

Presentation Outline

- SCWM Experiment Overview
 - Background and Motivation
 - Hardware and DECLIC diagnostics
 - SCWM science objectives
- Test Sequence 1 July, 2013
 - Test Sequence operation profile
 - Preliminary observations
- Summary and Future Work
 - Upcoming SCWM Test Sequences Baseline schedule

Supercritical Water Mixture (SCWM) Experiment

- Overview -

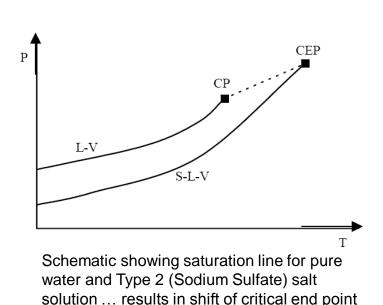

SCWM Experiment - Background and Motivation

SCWM was conceived as a *precursor* experiment for eventual SCWO experiments:

• SCWM experiment fits naturally in the scheme of investigating supercritical water phenomena ... particularly in terms of advancing Supercritical Water Oxidation (SCWO) technology

- key technological hurdle limiting application of SCWO technology is the control of corrosion and fouling caused by deposition of salt precipitates
- new SCWO reactor designs (internal heating) will have transcritical regions that will require a detailed understanding of nearcritical behavior of many thermo-physical processes


Test in 1-g showing illustrating rapid build-up of salt precipitate; Na_2SO_4 aqueous solution 4%-w at (T_{BF} = 356C, P=250 atm) flowing past unheated rod (left) and heated rod (right) (Hodes, M. '04)

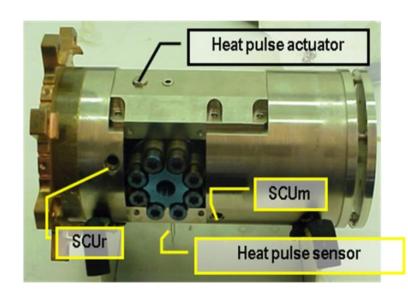


SCWM Experiment - Objectives

Science Objectives:

- quantify critical point for a specific salt/water mixture (0.5%-w Na₂SO₄)
- observe/quantify incipient precipitation and solvation at near critical conditions
- observe/quantify transport processes of the precipitate in the presence of thermal/salinity gradients





DECLIC Hardware and Diagnostics

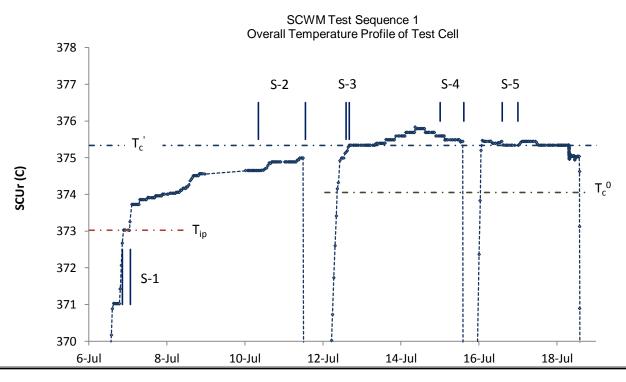
- Direct observation: field of view = Ø 12 mm w/ a resolution 10 μm.
- Light transmission measurement and grid shadow for turbidity and index gradient
- Light Scattering: small angle or 90° for turbidity measurements
- Small field of view (microscopy) 1 mm w/ a resolution of 5 μm
- Cameras: 2 High resolution (HR) and 1 high speed (HS) cameras
- Light Sources: 2 mW He-Ne 633 nm laser with various attenuation filters; several 670 nm LED's

Optical Axis	ALI	HTI	DSI
01	Interferometry	WF and SF imagery, Grid, transmission, Low Angle Scattering	
O2	WF and SF imagery, Grid, transmission, LAS		Transversal imagery
O3			Interferometry
O4	WF and SF imagery, Grid, transmission, Low Angle Scattering		Transversal imagery
O5		WF and SF imagery, Grid, transmission, Low Angle Scattering	
O6	Interferometry		
07			WF and SF imagery (HR) Interferometry
08			Interferometry (reference beam)

SCWM Test Sequence 1

Preliminary Observations

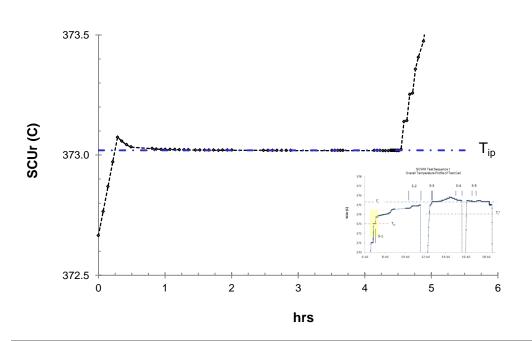
SCWM Operational Schedule

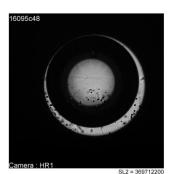

SCWM Experiment Schedule - July 2013 to May 2014					
Sequences	Activities	Description	Duration	Start Date (GMT)	End Date (GMT)
SCWM Test Sequence 1	DECLIC-HTI-SC7	Science HTI	16/ 00:00	1-Jul-13	17-Jul-13
(DECLIC-HTI-SEQ8)		Margins	01/ 00:00	17-Jul-13	18-Jul-13
		Duration :	18 day	Delay :	66
SCWM Test Sequence 2	DECLIC-HTI-SC8	Thermal Regulation improvement + Science HTI	16/ 00:00	9-Sep-13	25-Sep-13
(DECLIC-HTI-SEQ8)		Margins	01/ 00:00	25-Sep-13	26-Sep-13
		Duration :	18 day	Delay :	66
SCWM Test Sequence 3	DECLIC-HTI-SC9	Science HTI	17/ 00:00	2-Dec-13	19-Dec-13
(DECLIC-HTI-SEQ9)		Margins	01/ 00:00	19-Dec-13	20-Dec-13
		Duration :	18 day	Delay :	31
SCWM Test Sequence 4	DECLIC-HTI-SC10	Science HTI	16/ 00:00	20-Jan-14	5-Feb-14
(DECLIC-HTI-SEQ10)		Margins	01/ 00:00	5-Feb-14	6-Feb-14
		Duration :	18 day	Delay :	24
SCWM Test Sequence 5	DECLIC-HTI-SC11	Science HTI	16/ 00:00	3-Mar-14	19-Mar-14
(DECLIC-HTI-SEQ11)		Margins	01/ 00:00	19-Mar-14	20-Mar-14
		Duration :	18 day	Delay :	24
SCWM Test Sequence 6	DECLIC-HTI-SC12	Science HTI	16/ 00:00	14-Apr-14	30-Apr-14
(DECLIC-HTI-SEQ12)		Margins	01/ 00:00	30-Apr-14	1-May-14
		Duration :	17 day		

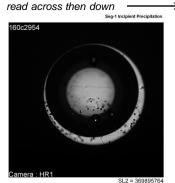
SCWM Test Sequence 1

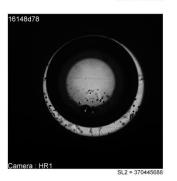
Test sequence began on July 1st and ended on July 18th

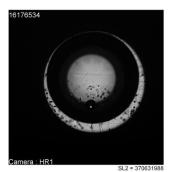
- · Primary science objective was to find the shift in critical point
- · Three power interruptions occurred near critical point early part of test sequence
- Peltier element, PEB, used in precision temperature control near critical point, exhibited off-nominal behavior
- Time spent on optimizing thermal regulation system ... attempted to minimize temperature gradients

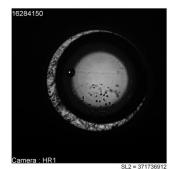


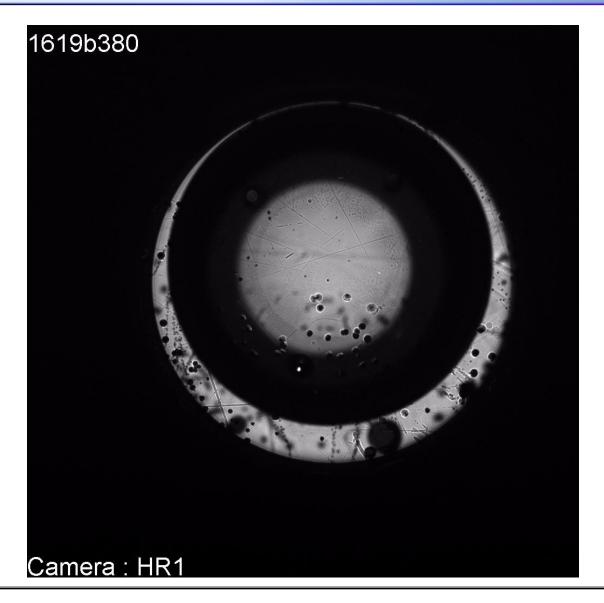



Segment 1 – Incipient Precipitation

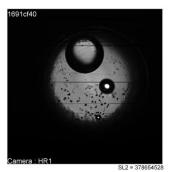

First appearance of salt precipitate occurs at $T_{ip} \sim 373$ °C

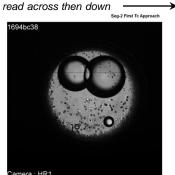

 During isochoric heat-up of test cell localized boiling forms channels of small vapor bubbles which appear to form nucleation sites for salt precipitation



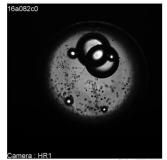


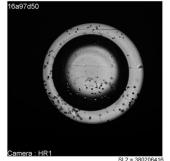
Onset of precipitation

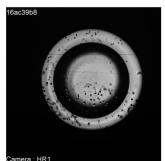


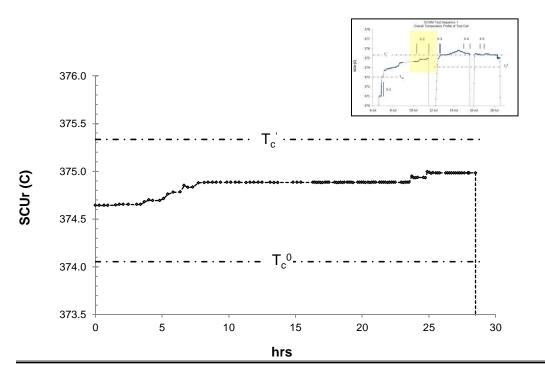

Segment 2 – First Approach to T_c

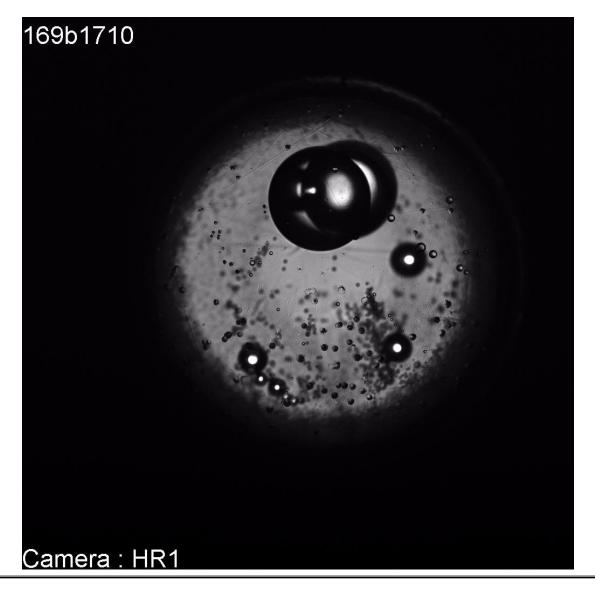
First approach to Tc' ...

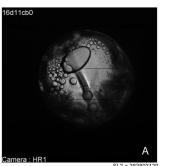

- Very slow approach in steps of 10 mK at an average rate of 14 mK/hr near critical
- Precipitate appears to re-dissolve just below Tc'

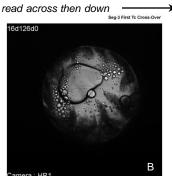

SL2	SCUr (°C)
378 654 528	374.693
378 846 264	374.832
379 424 976	374.883
379 617 984	374.884
380 206 416	374.884
380 385 720	374.984

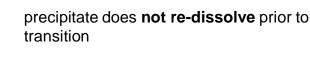




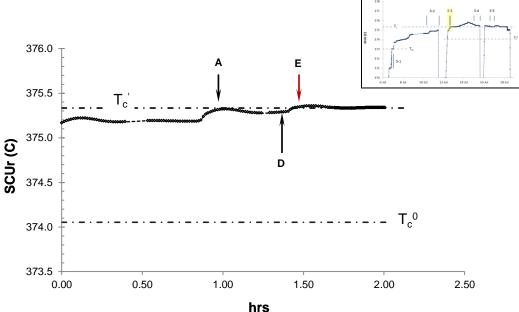


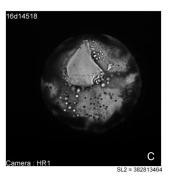


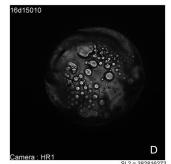

Segment 3 – First Critical Transition

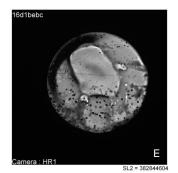

First transition form sub-critical to supercritical at Tc' = 375.335 °C

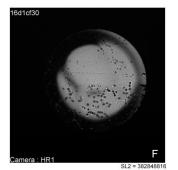
	3
	3
Approach to Tc' faster than Segment 1, at an	3
average rate of 134 mK/hr near critical	3

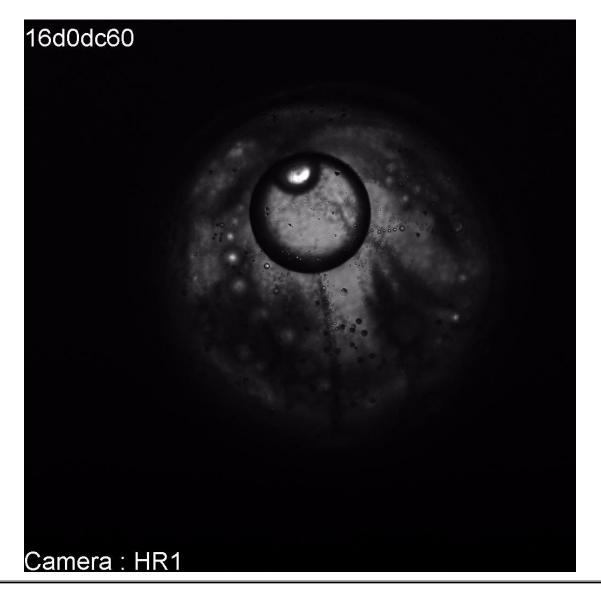

SL2	SCUr (°C)
382 803 210	375.312
382 805 712	375.319
382 813 464	375.308
382 816 272	375.295
382 844 604	375.341
382 816 272	375.295





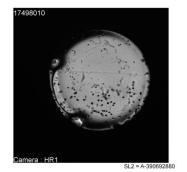


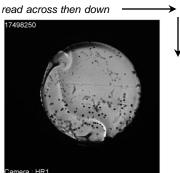

(between D - E in plot)



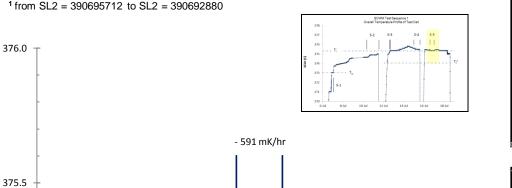
First critical transition: SCUr : ranges from 375.312 °C to 375.295 °C

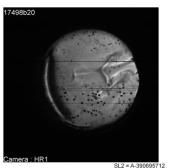
375.0 + 0.00

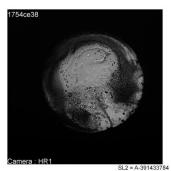

Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

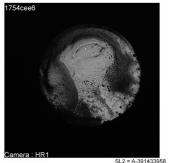

Segment 5 - Quench Transition

Transition from supercritical to sub-critical


average quench rate ~ 591 mK/hr ¹


SL2	SCUr (°C)
390 692 880	375.36395
390 693 456	375.36023
390 695 712	375.34375
391 433 784	375.29800
391 433 958	375.29800
391 434 390	375.29800





SL2 = A-390693456

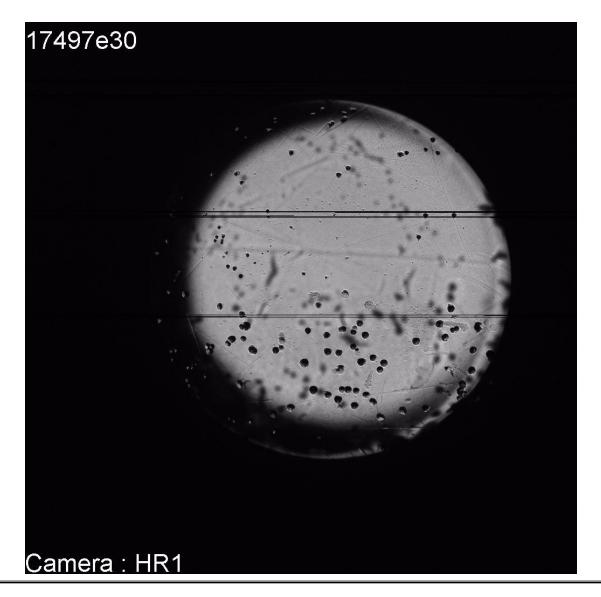
Quench transition:

SCUr : ranges from 375.364 °C to 375.298 °C

0.10

0.15

(hr)


0.20

0.25

0.30

0.05

Summary

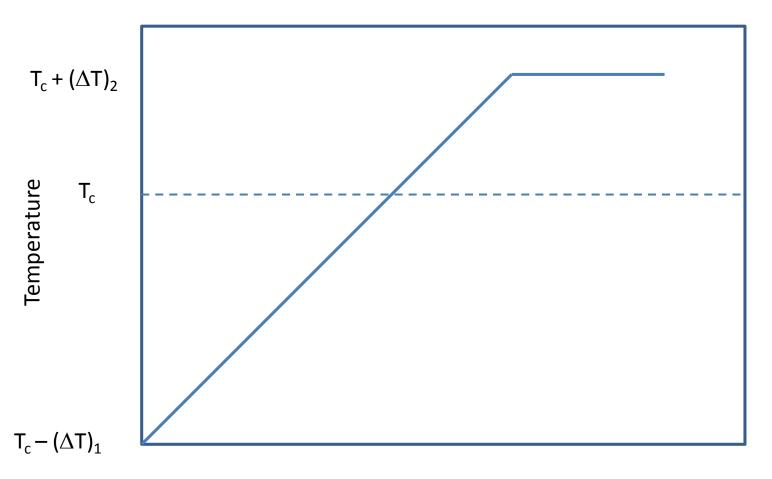
Summary

- Test Sequence 1 provided preliminary value for critical point of solution
 - Tc' = 375.335 °C (indicated)¹ for Na₂SO₄ 0.5%-w aqueous solution
 - Precipitation phenomena appears to be dependent upon near critical "approach rate"
 - Salt dissolution / precipitation appears to be highly reversible ... surface effects are minimal

Future Work

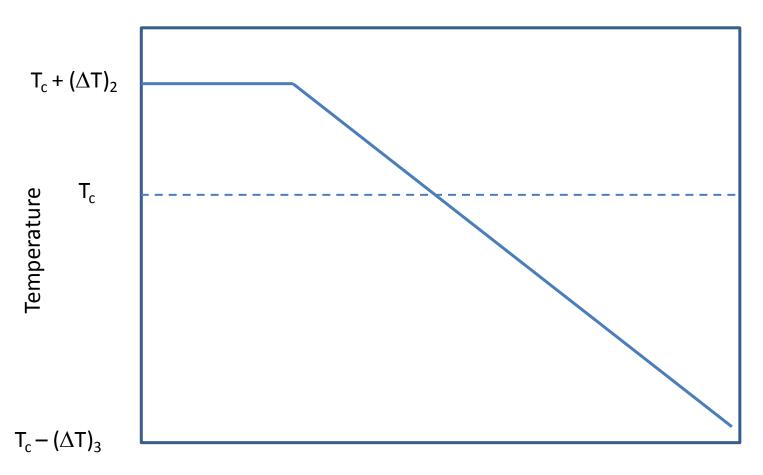
- Thermal regulation system needs to be optimized for operation w/o one of the Peltier elements (PEB)
- Temperature "offset" needs to be defined

¹ indicated value of SCUr will need to be verified once the actual "offset" has been determined


BACKUP

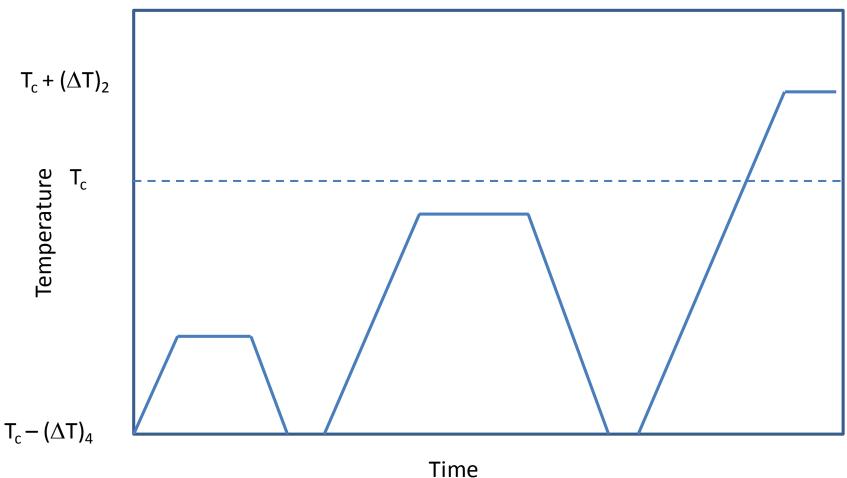
Test Sequence 1

Salt Precipitation During Temperature Increase


Time

Test Sequence 2

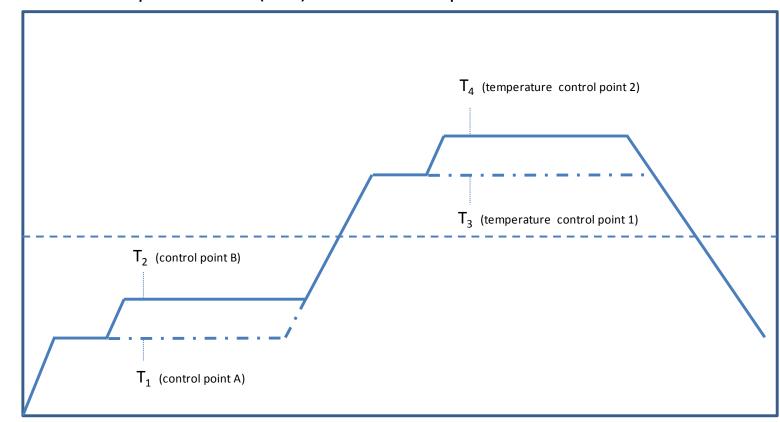
Salt Solvation During Temperature Decrease


Time

Test Sequence 3

Salt Agglomeration

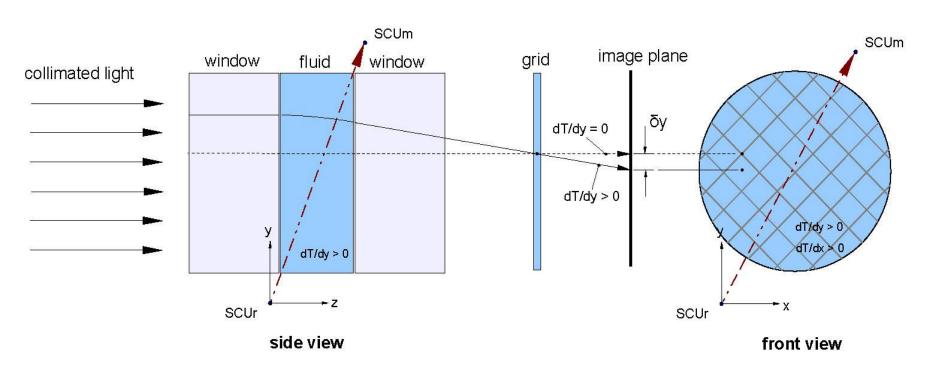
Temperature


 T_{c}

Supercritical Water Mixture Experiment (SCWM) in the High Temperature Insert – Reflight (HTI-R)

Test Sequence 4

Salt Transport in Near (Sub)-Critical and Supercritical Water



Time

Analysis (cont)

Shadow-graphic Configuration

$$\delta = \frac{\psi}{n} \frac{dn}{dy}$$

$$n = 1 + K\rho$$

 $n = 1 + K\rho$ n = refractive index $<math>\psi$, K are constants