9,401 research outputs found

    Techniques for carrying out radiative transfer calculations for the Martian atmospheric dust

    Get PDF
    A description is given of the modification of a theory on the reflectance of particulate media so as to apply it to analysis of the infrared spectra obtained by the IRIS instrument on Mariner 9. With the aid of this theory and the optical constants of muscovite mica, quartz, andesite, anorthosite, diopside pyroxenite, and dunite, modeling calculations were made to refine previous estimates of the mineralogical composition of the Martian dust particles. These calculations suggest that a feldspar rich mixture is a very likely composition for the dust particles. The optical constants used for anorthosite and diopside pyroxenite were derived during this program from reflectance measurements. Those for the mica were derived from literature reflectance data. Finally, a computer program was written to invert the measured radiance data so as to obtain the absorption coefficient spectrum which should then be independent of the temperature profile and gaseous component effects

    Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter

    Full text link
    The origin of both the diffuse high-latitude MeV gamma-ray emission and the 511 keV line flux from the Galactic bulge are uncertain. Previous studies have invoked dark matter physics to independently explain these observations, though as yet none has been able to explain both of these emissions within the well-motivated framework of Weakly-Interacting Massive Particles (WIMPs). Here we use an unstable WIMP dark matter model to show that it is in fact possible to simultaneously reconcile both of these observations, and in the process show a remarkable coincidence: decaying dark matter with MeV mass splittings can explain both observations if positrons and photons are produced with similar branching fractions. We illustrate this idea with an unstable branon, which is a standard WIMP dark matter candidate appearing in brane world models with large extra dimensions. We show that because branons decay via three-body final states, they are additionally unconstrained by searches for Galactic MeV gamma-ray lines. As a result, such unstable long-lifetime dark matter particles provide novel and distinct signatures that can be tested by future observations of MeV gamma-rays.Comment: 19 pages, 4 figure

    Giant Molecular Clouds in M33 - I. BIMA All Disk Survey

    Full text link
    We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13" diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data we generated a catalog of 148 GMCs with an expectation that no more than 15 of the sources are spurious. The catalog is complete down to GMC masses of 1.5 X 10^5 M_sun and contains a total mass of 2.3 X 10^7 M_sun. Single dish observations of CO in selected fields imply that our survey detects ~50% of the CO flux, hence that the total molecular mass of M33 is 4.5 X 10^7 M_sun, approximately 2% of the HI mass. The GMCs in our catalog are confined largely to the central region (R < 4 kpc). They show a remarkable spatial and kinematic correlation with overdense HI filaments; the geometry suggests that the formation of GMCs follows that of the filaments. The GMCs exhibit a mass spectrum dN/dM ~ M^(-2.6 +/- 0.3), considerably steeper than that found in the Milky Way and in the LMC. Combined with the total mass, this steep function implies that the GMCs in M33 form with a characteristic mass of 7 X 10^4 M_sun. More than 2/3 of the GMCs have associated HII regions, implying that the GMCs have a short quiescent period. Our results suggest the rapid assembly of molecular clouds from atomic gas, with prompt onset of massive star formation.Comment: 19 pages, Accepted for Publication in the Astrophysical Journal Supplemen

    Diffuse continuum gamma rays from the Galaxy

    Get PDF
    A new study of the diffuse Galactic gamma-ray continuum radiation is presented, using a cosmic-ray propagation model which includes nucleons, antiprotons, electrons, positrons, and synchrotron radiation. Our treatment of the inverse Compton (IC) scattering includes the effect of anisotropic scattering in the Galactic interstellar radiation field (ISRF) and a new evaluation of the ISRF itself. Models based on locally measured electron and nucleon spectra and synchrotron constraints are consistent with gamma-ray measurements in the 30-500 MeV range, but outside this range excesses are apparent. A harder nucleon spectrum is considered but fitting to gamma rays causes it to violate limits from positrons and antiprotons. A harder interstellar electron spectrum allows the gamma-ray spectrum to be fitted above 1 GeV as well, and this can be further improved when combined with a modified nucleon spectrum which still respects the limits imposed by antiprotons and positrons. A large electron/IC halo is proposed which reproduces well the high-latitude variation of gamma-ray emission. The halo contribution of Galactic emission to the high-latitude gamma-ray intensity is large, with implications for the study of the diffuse extragalactic component and signatures of dark matter. The constraints provided by the radio synchrotron spectral index do not allow all of the <30 MeV gamma-ray emission to be explained in terms of a steep electron spectrum unless this takes the form of a sharp upturn below 200 MeV. This leads us to prefer a source population as the origin of the excess low-energy gamma rays.Comment: Final version accepted for publication in The Astrophysical Journal (vol. 537, July 10, 2000 issue); Many Updates; 20 pages including 49 ps-figures, uses emulateapj.sty. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Float zone processing in a weightless environment

    Get PDF
    Results are given for investigations into: (1) the physical limits which set the maximum practical diameters of Si crystals that can be processed by the float-zone method in a near weightless environment, and (2) the economic impact of large, space-produced Si crystals on the electronics industry. The stability of the melt is evaluated. Heat transfer and fluid flow within the melt as dependent on the crystal size and the degree and type of rotation imparted to the melt are studied. Methods of utilizing the weightless environment for the production of large, stress-free Si crystals of uniform composition are proposed. The economic effect of large size Si crystals, their potential applications, likely utilization and cost advantages in LSI, integrated circuits, and power devices are also evaluated. Foreseeable advantages of larger diameter wafers of good characteristics and the possibilities seen for greater perfection resulting from stress-free growth are discussed

    Constraints on cosmic-ray propagation models from a global Bayesian analysis

    Full text link
    Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle acceleration in SNR shocks, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions, The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, that uses astrophysical information, nuclear and particle data as input to self-consistently predict CRs, gamma rays, synchrotron and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.Comment: 19 figures, 3 tables, emulateapj.sty. A typo is fixed. To be published in the Astrophysical Journal v.728 (February 10, 2011 issue). Supplementary material can be found at http://www.g-vo.org/pub/GALPROP/GalpropBayesPaper

    Propagation of cosmic-ray nucleons in the Galaxy

    Full text link
    We describe a method for the numerical computation of the propagation of primary and secondary nucleons, primary electrons, and secondary positrons and electrons. Fragmentation and energy losses are computed using realistic distributions for the interstellar gas and radiation fields, and diffusive reacceleration is also incorporated. The models are adjusted to agree with the observed cosmic-ray B/C and 10Be/9Be ratios. Models with diffusion and convection do not account well for the observed energy dependence of B/C, while models with reacceleration reproduce this easily. The height of the halo propagation region is determined, using recent 10Be/9Be measurements, as >4 kpc for diffusion/convection models and 4-12 kpc for reacceleration models. For convection models we set an upper limit on the velocity gradient of dV/dz < 7 km/s/kpc. The radial distribution of cosmic-ray sources required is broader than current estimates of the SNR distribution for all halo sizes. Full details of the numerical method used to solve the cosmic-ray propagation equation are given.Comment: 15 pages including 23 ps-figures and 3 tables, latex2e, uses emulateapj.sty (ver. of 11 May 1998, enclosed), apjfonts.sty, timesfonts.sty. To be published in ApJ 1998, v.509 (December 10 issue). More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.html Some references are correcte

    The final COS-B database: In-flight calibration of instrumental parameters

    Get PDF
    A method for the determination of temporal variation of sensitivity is designed to find a set of parameters which lead to maximum consistency between the intensities derived from different observation periods. This method is briefly described and the resulting sensitivity and background variations presented

    Diffuse Galactic Soft Gamma-Ray Emission

    Get PDF
    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic Center by the HIREGS balloon-borne germanium spectrometer to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power-law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/CGRO observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient, and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.Comment: 26 pages, 7 figure, submitted to Ap
    corecore