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FOREWORD

A summary report is presented on work performed during the period
January to September 1974 on Contract NAS8-29877, "Float-Zone Processing
in a Weightless Environment." The reported work set forth the results
of evaluations to determine: 1) some practical limits on the size of

Si crystals that can be grown in a Skylab-type space vehicle, and

2) the economic impact of large, space-produced Si crystals on the
electronics industry.

This study program is sponsored by the George C. Marshall Space Flight
Center, National Aeronautics and Space Administration, Huntsville,
Alabama. Mr. M, Davidson is the COR director of the study. Dr. A. A.
Fowle, Dr. J. S, Haggerty, Mr. P, F. Strong and Dr. G. Rudenberg of
Arthur D. Little, Inc., and Prof. R. Kronauer of Harvard University
are the investigators.
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1.0 SUMMARY

1,1 PURPOSE AND SCOPE

The objective of this work i1s to evaluate and maximize the potential
benefits of producing faultless silicon crystals in a space cavironment
by the float-zone process. A perceived benefit is the possibility of
producing larger diameter crystals than can be achieved on earth which
may translate into less expensive crystal elements for final use. By
incorporating relative rotation between the crystal and feed stock,
forced convective currents may be induced 1: the melt which can result
in a radial distribution of axial heat flux at the freezing interface
which reduces grown-in stresses for crystals of the larger sizes that are
possible to produce in the near zero gravity environment. Specifically
the objectives of the program were:

1. Analyze the stability of floating zones to determine the
practical diameters of Si crystals that can be processed
in a near zero gravity environment. These diameters will
be related to rotation rates based on estimates set by
stability criteria,

2, For the diameters determined in (1), carry out an economic
analysis to project the ten year impact to the electronics
industry. This analysis will include the expected advan-
tages on the individual manufacturing phases of integrated
circuits,

1.2 CONCLUSIONS AND RECOMMENDATIONS

1.2,1 The Technology of Float-Zone Crystal Growing Process in Space

Stable molten zones in practical configurations for crystals as large
as 0.304 m (12 inch) radius can be maintained with limited but useful
rotation rates in a float-zone process in a near zero gravity environ-
ment.

The use of isorotation or counterrotation, rotational rates, and crystal
and feed stock diameter ratios have been examined qualitatively and semi-
quantitatively for their influence on producing stress-free crystals of
uniform composition, Some tentative specification of these process
variables for best results have been made; however, a combination of
experimentation and more analysis is needed before a specification of
these variables for improved and/or larger space grown crystals can be
made with confidence.

As a first priority, we recommend some experiments based on model studies
in order to provide further information relating to the stability of and
circulation within the molten zone of a silicon crystal process in space.
The control of fluid motion within the molten zone is critical to a




successful process and, therefore, a complete understanding of this

motion is necessary to any further, useful analyses directed to the

optimization of the process, These experiments are recommended as

the most effective next step in a program leading to the design of

a space experiment, .

1.2.2 Economic Impact

There is considerable value in large diameter uniform crystuls and wafers
for the electronics industry. This 1s already evident by the shift from
5 cm (2 inch) to 7.6 cm (3 inch) diameter crystals by the industry. The
present study shows that a number of applications can be identified where
much larger wafers with uniform characteristics have commercial value.
The principal value of the large wafers is derived from lower chip costs
because of reduced per unit area processing costs.

The analysis of the crystal growth process through its various stages
from polycrystalline feed stock to polished wafers shows that the
advantage of increased crystal diameters is questionable when based
strictly on wafer area per unit length of boule or unit weight of poly-
crystalline feed stock., When made long enough, a float-zone process can
be considerably more efficient than a Czochralski process in converting
polycrystalline feed to acceptably doped single crystals. Offsetting
this advantage are increased wafer thicknesses and kerf losses with large
diameter crystals. The principal savings or value derived from using
large diameter wafers stems from reduced device processing costs per

unit area. Secondarily, the efficiency of utilizing area improves with
larger wafer diameters.

The economic impact study was based on substituting 15.2 cm (6 inch)

wafers for the currently used 7.6 cm(3 inch) wafers., If one-third

of the total number of smaller wafers were replaced by an equivalent

area of larger wafers, the annual impact would be about $250-$290 million
and & cumulative ten-year im; ct would be $6.7-$7.3 billion. The use

of larger, more complex devices will reduce the cost of finished electronic
packages, The economic impact from reduceud finished package costs is
extremely tenuous; however, based on past experience it could equal

the savings derived from reduced chip processing costs.
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2.0 INTRODUCTION

There are several advantages that are potentially realizable for a
floating~zone crystal growth process carried out under near zero gravity
conditions. First, there are the factors that are inherent to a floating
zone process whether gravity forces are present or not. One of the prin-
cipal advantages is that higher purities are possible with cotainerloss
crystal growth processes from high temperature melts. Another is *hc
inherently uniform axial dopant levels which result from a zone leveling
mode of growth. Second, theve are factors arising uniquely as a con-
sequence of the near weightless environment of a space laboratory. One
is that buoyancy-induced convection is effectively eliminated from the
melt. Lack of control over this transport mechanism is responsible for
many common crystallographic defects. Another is that the growth of
crystals larger in diameter than can be processed on earth can be enter-
tained because of the absence of the destabilizing effects of gravity
forces. The availability of larger crystals can potentially be trans-
lated to economic advantage through the value, per se, of large crystal
elements or by virtue of higher yields of acceptabla crystal chips from

the boule,

In order to meet the goal of producing large crystals, it is necessary
to overcome the deleterious effects of thermally-induced, residual
stresses in the crystal that become emphasized with scale. An ideal
solution to this problem is achieved if the conditions of the process
are arranged to produce a freezing interface that is a plane perpendi-
cular to the axis of growth,

In a first generation space laboratory for processing large Si crystals,
the use of an incandescent heat source is envisioned., This source will
heat the melt via radiation and, as the silicon melt is opaque to the
emitted radiation, the heating will take place at the surface, In tre
absence of rotation, heat transport by solid conduction will convey heat
to interior regions of the melt but this mechanism is inadequate for

large diameter crystals.

Rotation of the crystal and feed stock provides a means for effecting
"in-depth" heating of the melt zone. Rotation also reduces the azimuthal
gradients that would exist in the abseace of rotation. Rel..ive angular
rotational rates between the feed and crystal and/or different . stal
and feed stock diameters result in circulating currents within tu. melt
zone and attendant forced convective heat transport, The technological
task that presents itself 18 to define the rotational rates and geometric
characteristics of the crystal and feed stock that will result in the
circulation currents that are most favorable for producing a stress-free
crystal that is also free of crystallographic defects. Although rotation
may be used to advantage to induce convective heat transport to the

inner regions of the melt, it also results in destabilizing centrifugal
forces and can produce periodic variations in the flow field within the

o
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melt zone, The type and degree of rotation must, theiefore, be con-
trolled so that the stability limits of the melt are not exceeded and
the spatial and temporal variations of velocity associated with the
forced circulation currents within the melt are attenuated to the
degree necessary to prevent variations in the solute concentration
within the growing crystal.
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3.0 TECHNICAL INVESTIGATION

3.1 APPROACH

The approach followed in the execution of the technical investigation {is
outlined below:

® Carry out dimensional analyses to determine order of
magnitude influences of the forces and heat transport
mechanisms active in the melt zone. Construct the inde-
pendent dimensionless groups which sets limits on the
stability of the melt and characterize the velocity and
temperature fields within a stable melt.

® Review the literature relating to the stability of
rotating and non-rotating liquid columns. Extend the
existing analyses "o include an important mode of
instability hitherto unreported. Establish the numeri-
cal values for the dimensionless groups governing the
stability of the melt zone.

® Review the literature relating to the nature of the flow
in the melt resulting from rotation. Establish the dif-
ferential equations which determine the velocity fields
in the melt. As the complexity of a complete solution
precludes anything but an extensive prngram involving
numerical analysis and computers, carry out simple
limiting/type analyses and use the insights provided by
the literature dealing with experiments and theory rela-
tive to similar flows to gain the best possible under-
standing of the flow within the molten zone ana the
important physical factors that influence this flow.

® Establish the differential equations which determine the
temperature field within the melt. These equations are
relatively easy to sci e if the velocity field is estab-
lished. 1In lieu of a means for calculating the real
velocity field, carry out heat transfer analyses of some
simple flow models of the melt to gain understanding of
the relative importance of convective and conductive heat
transfer mechanisms, temperature distributions, etc.

@ Oa the basis of the preceding, postulate the type of
rotation needed to induce the most favorable circulation
currents in the melt.

® Suggest necessary and promising avenues for investigation
in future work.
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3.2 DIMENSIONAL ANALYSIS

Dimensional analysis has been applied to establish the independent

dimensionless groups that may govern the behavior of the float-zone

process in a near weightless environment in order to: (1) provide N
order-of -magnitude insight into the relative magnitude of the

forces responsible for the absolute stability of the melt zone and

the circulation within a stable melt; (2) provide order-of-maguitude v
insights into the heat transfer mechanisms responsible for the temper-

ature field within a stable melt; and (3) determine the similitude

relationships required for scale model experiments.

The technical support for the results follow from a straightforward
application of dimensional analysis common to engineering practice.
The pertinent results follow.

3.2.1 Nomenclature {

ro—

a = radius: m

CP(T) = temperature dependent specific heat of the melt

at constant pressure: j~Kg_1-K-’

h = height of the melt zone: m
g = local gravity constant: N-Kg-l

k(T) = temperature dependent thermal conductivity

coefficient: watt-m 1-K !

L = latent heat of fusion of the melt: j - Kg-l

NB *® Bond number: dimensionless
NPR *®= Prandtl number: dimensionless
NR *® Reynolds number: dimensionless

#= Weber number: dimensionless

Uit

q"()‘,i,i) »» incident radiation from the source as distributed
fph in wavelength and over the melt surface as a

function of radius ratio, ﬁL’ and axial distance

% ~2 1
ratio, E-: watt ~ m .

e~




a(),T)

e(T)

Y
A

p(T)

o(T)

u(T)

Subscripts:

e T L R s

reflection coefficient for the melt as dependent
on the wavelength ) of tre emitted radiation
from the source, the loial surface temperature
of the melt T, and the angle of incidence of the
oncoming radiation expressed as a function of

z

h : dimension’ :ss

radius: m
temperature: K
melting or freezing temperature: K

maximum temperature dif¢ rence between any two
radial locations withia the melt: K

velrcity oGoscziated with the circulation within

the melt: m ~ sec
dimension measured in axial direction: m

absorption coefficient for the melt as dependent
on the wavelength )\ of the emitted radiation from
thr source and the local surface temperature T of
the melt: dimensionless

volume coefficient of expansion of the melt: Kfl

total hemispherical emissivity coefficient
(intagrated spectral value) as dependent on the
local surface temperature T of the melt:
dimensionless

=2 <4
Stefan~Boltzmann constant: watt-m <K

wavelength: m

temperature dependent density of the melt: Kg-m-3

temperuture dependent surface tension coefficient:

N-m-1

temperature dependent coeffici..t of viscosity:

l(g--t'n"l-sec-1

1 refers to the crystal
2 refers to the feed stock

F
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3.2,2 Application to Stability Requirements

The stability of the melt zone is determined solely by the dimensionless
parameters:

0 t13 ulz
L4 Weber number, Nw =
o

[
o] (o]
L { ]

h’l’

®
€ ‘NE

1

This result is subject to four rectrictions: (1) gravity forces are
small in respect to surface tension forces; (2) buoyant forces are
small in respect to surface tension forces; (3) viscous forces atten-
dant on the circulation induced in the melt by rotation are small in
respect to surface tension forces; and (4) the radial and axial veloci-
ties associated with the flow within the melt are small in respect to
the peripheral speed of rotation. These restrictions are met if

8Ty h
o Bond number, N, = << 1
B o
prATrlz
® —_— << 1
o
Ur., w
e 11 << 1
o
° L << 1
1%
Assuming that scability is insured for a Weber number and the geometric
r h
ratios ;3 and — of thz order unity, we will show in following sections
1 "1

that these restrictions are satisfied for S1i crystals of large diameter
processed in a gravity field appropriate to an earth orbiting space
laboratory.




3.2.3 Application to Fluid Circulation Patterns

An incandescent heat source applies no applicable forces of electromag-
netic origin to the molten zone. In an operational regime approaching
the limits of melt stability, the influence of buoyant and gravity
forces have been assessed as unimportant. The effects of variations in
the surface tension coefficient on fluid motion are also neglected.
Accordingly, the circulation of the melt is determined by inertia and
viscous forces and, therefore, the circulation patterns within the

melt are determined by:

2
CL Y
L Reynolds number, NR =
u
r
° 2
n
o L
1
w
° 2
“1

3.2.4 Application to the Temperature Field

The temperature field within a stable, axisymmetric melt in vacuo which
is opaque to the incident radiation from an incandescent source 1is
determined by:

2
Dl'l wl
o Reynolds number, N, =
u
C wu
g Prandtl number, N, = -Ji—-
aq"r
P 1
kT
o
3
eyT r
[ o 1
k




[N A S

pV Lr

1
@
kKT
o

r
° 2
b1
° h
b1

(1]
. -
1

2.2.5 Application to Scale Model Tests: A Summary

Similitude in respect to the stability of a melt requires for both the
model and prototype that

3 2
Ty W
L NW - ———— = constant
g
(The same value for both model and prototype)
2
P BTy
® N = ——— << 1
B o]
p g B AT r12
® << 1
o
urow
T [ 11 << 1
) a
1
) v << 1
1%
©2
L — = constant
r
1
L . constant
5
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[ — = constant
“y

Similitude in respect to the velocity field within a stable melt
requires for both the model and prototype that

pr w
° NR = — = constant
T2
® —~ = constant
r
1
° h - constant
r
1
“2
° —= = constant
|

Similitude in respect to the temperature field withiu a stable melt
requires for both the model and prototype that

aq r1
° -1:75——— = constant
o)
£y To3 ro
L] —_— = constant
k
o VL lf1
[ ] — -
* T constant
o
pr 2 w
° N = ———JL~——l = constant
R H
C u
. = =
NPR —J%:— constant
T2
® T = constant
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—— = constant

1
wz ,
‘m‘ = constant
1
3.3 STABILITY ANALYSIS .
(1)*

In our previous work for NASA , the absolute stability limits for

molten zones of various shapes were discussed in detail but the

destabilizing effects of rotation were not a consideration. The

results of the previous work are reproduced in Figure 1 which shows =
the family of zone shapes which obtain under steady pulling conditions

in zero gravity. The geometric limit for absolute stability is indi-

cated by the dotted circle. The circle represents the stability limit

for a non-rotating system where surface tension forces dominate, and,

if exceeded, the molten zone may pinch off into two separate caps.

Hocking(z) discusses the case of a rotating cylindrical column of
liquid and derives the stability criteria for axisymmetric longitudinal
disturbances as well as for disturbances that are the same in all
planes perpendicular to the axis of the cylinder that leave the cen-
troid of the perturbed shape on the axis. In the latter case he
obtains the curious theoretical result that a region of neutral
sts*ility exists in the case of an inviscid liquid which joins the

- gion of instability in case the viscosity is finite. For real
liquids his analysis leads to the same condition that we obtained by
the simpler means presented in Appendix A, namely that the column 1is
stable 1if

wvhe.e
r, = r, = a = radius of zone
1 w, = w = angular velocity of zone

In this case the cross section of the molten zone is perturbed to a
near elliptical shape; that is, by the lowest order radial disturbance.

tocking's result for axisymmetric disturbances applies to infinitely :
long columns of liquid. 1In the case of columns of finite length, the ]

disturbance must be a standing wave which does not alter the volume of
the molten zone so the wavelength must meet the condition

*
Superscript numbers in parentheses refer to Section 5.0, REFERENCES

12
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N

nA = h
where
n is integer
A is the wavelength
h is the height of the zone

Then the condition for stability becomes, for n =1,

This condii%gn for stability was tested in the experiments of Carruthers

and Grasso , and they showed it to be applicable over a useful range
of their experiments.

In the present program we have examined theoretically the stability of
the column with respect to another type of axial distrubance, hitherto
unreported in the literature. In this analysis we consider an unsym-

metric disturbance corresponding to the condition

1. -

2 A = h
This is a longer wavelength disturbance than any possible axisymmetric
disturbance and must be asymmetric on account of the requirement to
preserve the volume of the melt. In this case the molten zone is per-
turbed to a shape like that of a beam with hinged ends whirling in its

first bending mode. In Appendix A the condition for stability is shown
to be

_o 1Y
3 2 2 \a
pa” w ™
Graphs of the two stability limits under conditions of rotation are
shown in Figure 2, It is to be noted that the requirement

h < 2n

a

must be met for stability even in the absence of rotation. This is the
classical result of Rayleigh and is also indicated by the singularity
in Hocking's criterion. Moreover, for absolute stability, as opposed
to possible metastable solutions, our previous work set the limit

% < 4.3 for a cylindrical molten zone. However, as Figure 2 shows, the
asymmetric disturbance leads to instability for lower rotation rates
over the range of h/a of most practical interest.

14
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From the above, we might choose a2 condition of % = % as a practical

working number to satisfy requirements for the in-depth heating of the
melt and stability under conditions of rotation. In this casc, the
least stable limit of those investigated (L1 of Figure 2) reduces Lo

_&33(»

5 = 1, or a Weber number limit of unity. It is to be noted that

these stability analyses, although providing useful quantitative cri-
teria for engineering purposes, are limited. They do not account for
the effects of internal circulation within the melt or for a variety
of possible ratios of the rotational rates and the radii of crystal
and feedstock. To account properly for these effects is a formidable
analytical problem. It is a problem where the most efficacious solu-
tion is most likely derived from tests. Some suggested experimental
methods are described in Section 3.6.

3.4 STABILITY LIMITED MAXIMUM CRYSTAL ROTATION

On the basis of the arguments, limitations, and results presented in
Sections 3.2 and 3.3, a calculation of the maximum rotational rate vs.
crystal radius has been made for Si molten zones in a radius range of
0.038 m (1.5 in) to 0.304 m (12 in) with results appearing in Table 1.
The basis for these calculations are:

p a w2
N, = = 1
W a
N, = bgah
B o
rl = rz = a
wl = m2 = w
h |
- = "7
a

o = 7.2 x 107} N/m
-3
¥ = 2x 10 ~ Kg/m - sec
p = 2.2 x 103 Kglm3

-5

g = 9.8x 10—5 m/sec2 = 10 times value at earth's surface

16
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3.5 HEAT TRANSFER AND FLUID FLOW ANALYSIS

3.5.1 General Approach

Heat transfer analysis has two major purposes in application to the
float-zone processing of large Si crystals. First, it provides the
means to evaluate various design approaches for producing the in-depth
heating of the molten zone that is necessary to produce a stress-free
crystal and, thereby, best methods may bte selected. Second, thermal
analvsis must be applied to design a process system that is minimized

in respect to size, weight and power consumption. In this program
thermal analysis is addressed to the first purpose only. Rigorous
application to the second purpose follows logically sometime after the
practicality of the space processing of large Si crystals is demonstrated
to hold real promise. Some estimates of the process system requirements
have been made by MSFC, and they are regarded to be consistent with the
capabilities of a next generation Sky-Lab.

The ideal conditions of heat transfer to be sought are those that result
in a freezing interface that is a plane perpendicular to the axis of
growth, for it is this condition that minimizes the thermally induced
stresses in the growing crystal. To achieve this ideal requires that
the heat flux plus the change of phase heat release per unit area at
all local areas of the freezing interface match that transferred to the
growing crystal under a unique circumstance; i.e., that the freezing
interface is a plane perpendicular to the axis. It is clear that the
solution to this problem involves the heat transfer characteristics

of the whole system consisting of the polycrystalline feed stock, the
molten zone, and the crystal.

Solution to the heat transfer problem associated with the feed stock
and crystal is fairly straightforward. As these materials, at their
operating temperatures, are opaque to the IR radiation emitted from the
molten zone, the solution involves phonon conduction in an axisymmetric
system in vacuo with radiation boundary conditions at the exposed
cylindrical surfaceékand with either a heat flux or a fixed temperature
boundary condition at the ends. We, among others, have developed com-
puter programs tu solve this problem routinely.

The difficult problem is the analysis of the heat transfer within the
melt. With an opaque melt, we have heat transfer by solid conduction
and forced convective heat transfer induced by the rotation of the mol-
ten zone. The importance of the heat trunsport contribut’on via con-
vection requires that the velocity field within the melt be known, and,
more to the point, be manipulated to achieve the desired condition for
producing stress-free crystcls of uniform composition.

*
Other boundary conditions can be easily accommodated.
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TABLE 1

FARAMETER LIMITS FOR STABLE, ROTATING, CYLINDRICAL Si MELTS

% a w aw NR NB prATazln paw/o
? n rad/sec  m/sec

0.038 2.55 0.097 3640  0.0014  4.32 x 10°%  2.70 x 1072
| 0.076  0.91  0.069 5190  0.0055 1.73 x 107’  1.92 x 107
§ 0.152 0.32 0.049 7230 0.0218  6.91 x 1077 1.36 x 10°°
| 0.304 0.12 0.036 10700  0.0870  2.76 x 10°°® 1.0 x 107%

An examination of the last three columns of Table 1 shows that three of
the four restrictions necessary to the assumption that inertia and surface

tension forces determine stability are satisfied. Satisfaction of the

fourth restriction, i.e., £% <<1l, is questionable. This is discussed in
Section 3.5.4 following. The maximum speeds of rotation appearing in Table 1

set the limits within which favorable circulation currents must be sought.
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If the influence of temperature cn tiue properties which govern the
circulation within the melt be ignored (as we believe it can be), then,
the solution to the problem of determining the velocity field within
the molten zone can be approached independently of the solution of the
thermal problem. In this approach, the material properties which
govern the circulation within the melt are fixed at their values mea-
sured at the melting temperature. Finally, fluid mechanical considera-
tions applied to the flow within a rotating, stable melt show the flow
to take place in the laminar regime which introduces some measure of

simplicity in an otherwise very complex problem.

3.5.2 Analysis of Temperature Field within the Molten Zone

The differential equations governing the combined convective and con-
ductive heat transport in a rotating, opaque axisymmetric molten zone
circulating in laminar flow are developed in Apperndix B. The equation

satisfied by the temperature is

X I e 1 ’12 wy | v st oot
+ = + - —2 v S—+v = =0 (I
ar'  az'l r

a rlz rl

where
L
r' = r/r1
' = z/r1
T' = T/To
= V/r1 wy
subscript

r refers to radial direction
z refers to axial direction

and all other symbols are defined in Section 3.2.1.

The solution to Equation 1 subject to the appropriate boundary condi-
tiocns (see Appendix B) can be gained by application of numerical tech-
niques and computer calculation provided that the velocity field

]

v ' and Vz' as a function of r' and z ) are known. The solution is a

description of the temperatures in the melt as a function of r' and z',
or the temperature field.
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It is of some interest to note that the dimensionless coefficient

p C rl2 w

—P 2 45 the product of the Reynolds number and the Prandtl

k
number, a result impossible to forecast by dimensional analysie. How-
ever, as the Reynolds number is an independent determinant of the
velocity field, the Reynolds number and Prandtl nuuber are independent
determinants of the temperature field as set forth in Section 3.2.4,

Two factors complicate the solution of Equatica 1. F , to be rigor-
ous, the contours of the exposed surface of the molte e under
rotating conditions should be known. Second, there 3¢ :nique solutiun
which specified the isothermal melting and freezing ir .ce in space

coordinates and meets the heat flux boundary conditions at these inter-
faces. It will require iteration in the computational process in order
to determine this unique solution.

The development above was carried out to reveal what is involved in,
and methods for, achieving a complete solution to the thermal behavior
of the molten zone. Actual solution was beyond the scope of this pro-~
gram,

3.5.3 Evaluation of Azimuthal Temperature Gradients

As shown in Section 3.4, the stability limited maximum allowable rate

of crystal and feed-stock rotation varies monotonically from 2.55 rad/
sec (24.35 rpm) for a radius of 0.038 m (1.5 in) to 0.12 rac/sec

(1.15 rpm) for a radius of 0.304 m (12 in). As a result of concern

that such low rotational rates might impose the need for careful con-
trol of azimuthal temperature gradients, an analysis of this problem
was completed. It was found in &1l cases that even these low rotational
rates result in a considerable reduction (smaller by a factor of 20 to
30) of the temperature gradient that would exist if no rotation were
present. The analysis and detailed results appear in Appendix C.

3.5.4 Analysis of Flow Field within the Molten Zona

The problem here is to define the flow field within the molten zone

that is most suitable for producing stress-free crystals of uniform
composition. A rcoview of the pertinent literature® shows that there are
no analytical or experimental results that are adequate to this defini-
tion; however, an interpretation of this literature provides useful
guladance.

One important simplifying characteristic of the flow field of interest
is that 1t is laminar. Both experiment and theory support this conten-
tion. Tn fact, the literature shows that the Reynold's numbers asso-

ciated with the fluid currents within the molten zone are of order VNR.

*See REFERENCES
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with NR g —— as usual. That is, the radial and axial components
U

of the veiocities induced in the w~lt by rotation times the cffective
hydraulic radius of the current cross sections in loc.l regions is
small in respect to the product of the peripheral speed of the crystal,
r) W times the crystal radius. As shown in Section 3.4, the maxiwum

value of NR set by stability for crystal sizes in a range of interest

vary from about 3600 to 10,000. Therefore, the Reynolds numbers asso-

ciated with the radial and axial currents within the molten zone are of

order 60 to 100. The experience with steady, incompressible chann:1

flows characterized by Reynolds numbers in this range shows them to be

laminar. However, just because the currents flow in -he laminar range -
does not mean they are simple in pattern. In fact, they are very com-

plex. An idea of this complexity is given by the erneriments of Hide

and Titman\%), Carruthers and Nassau(5) and Carruthers and Grasso(3),

even though none of these experiments truly duplicate the conditions

imposed on the molten zone in a typical float zone process.

The physical basis for and general character of the flow patterns within
the molten zone may be described as follows. Differences in the radii
or angular velocity cof rotatfon of either the crystal or feed stock give
rise to differences in the radial pressure gradient appearing next tc
the solid-1fquid interfaces resulting from the tangential velocities
induced near these surfaces by viscous shezar. The differences in the
pressure that results near these boundaries at any radius gives rice to
axial , =ssure gradients, and axial flows take place in response 1o
these ¢ adients. The general picture of these flows in an axiaf plane
through its axis of symmetry is one of rising and falliag axial flows
separated radially by cylindrical surfaces where viscous shear is great
and separated axially by radial plane where viscous shear is also large.
The flow regions of high shear next to the freezing and melting inter-
faces are commonly called the Ekman boundary layers. The axial flow
next to the outer surface of the melt is called the Rossby layer by

Hide and Titman. 1In cases where the rotational rates of the crystal and
feed stock are different, another radial plane of high shear regior is
located intermediate between the melting and freezing interfaces. Of
course, a tangential velocity distribution is present throughout the
flow field having local velocities that match those of the crystal and
feed stock at the melting and freezing interfaces. The picture in an
axial plane, then, is one of rotating cells separated by axial and
radial boundary ayers. The cells are cftea called Taylor-FProudman
cells in recognition of the piloneering work of these scientists on
viscous flows of the type under discussion.

The flow picture described is qualitatively correct but simplified.
Depending on the Reynolds number characteristics of the flow, the
boundary layers .an become large (at low values of Reynolds number) in
respect to the linear dimensions of the molten zone and the cellular
and boundary layer divisions become smeared. Moreover, at high
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Reynolds numbers, shear waves can develop in regions of bigh viscous
shear, as observed by Hide and Titman, which fact further complicates
the flow picture.

With the qualitative picture of the behavior of the flow field in mind,
the question becomes, how can one select the rotational and dimensional
characteristics of the system to best achieve in-depth heating in order
to minimize thermal stresses in the growing crystals while obviating
variations in solute concentration imparted by flow fluczuations? 1In
simple terms the objective is to convey the heat absorbed at the exter-
nal surfaces of the melt to interior regions while suppressing temporal
and spatial variations in the velccity field.

Figure 3 illustrates in schematic form som: more promising arrangements
for achieving the desired result. They appear in the order of their
expected merits. The expected qualitative features of the fluid flow and
heat transfer characteristics of the system shown in Figure 3a is
presented below as an example of what might be made to take wnlace in a
desirable design.

Starting at a location near the outer surface of the moltan zone next to
the freezing inteiface, we note an axial flow directed toward an inter-~
mediate radial plane of symmetry where the tangential component of
vel~rcity is zero everywhere. This axial stream is heated by the absorbed
radiation from the source, and, by virtue of convective heat transport,
a major portion of the net radiation absorbed is transferred to the
intermediate plane of symmetry. Here the axial stream diverts in direc-
tion to flow cadially inward in a boundary layer that can be likened to
a typical Ekman layer. The radial flow in this boundary layer peels

off as it proceeds toward the axis of symmetry giving rise to a uniform
axial flow proceeding in the direction of the freezing interface. As
this radial flow is bounded by an adiabatic surface at z = 0, the tem-
perature of this flow is unchanged. Within the axial flow proceeding
from the intermediate plane of symmetry to the freezing interface, we
note that the ratio of heat transport by forced convection to solid
conduction reduces, becoming zero at the interface. The net effect is
that the enthalpy flux entering radially at the intermediate plane, which
is nearly the same as the absorbed radiation, is uniformly distributed
over the freezing interface where it is released by heat transfer via
solid conduction. To complete the picture, the axial flow approaching
the freezing interface is diverted to flow radially outward in the

Ekman boundary layer next to this interface, thereafter to turn and flow
again axially next to the exterior surface of the melt.

In this i1dealized nicture, the intermediate radial plane of symmetry

is isothermal wit . temperature elevated above the melting point. The
total heat absorted in the outer layer of the melt is distributed uni-
formly over the freezing interface. 1f the crystal is insulated to pre-
vent radial gradients, then, the freezing interface will be a plane
perpendicular to the axis of symmetry--the desired result. With the
reasonable assumption that the heat flux contribution due to the latent
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FIGURE 3 SCHEMATIC REPRESENTATION OF AXIAL AND RADIAL
COMPONENTS OF VELOCITY FIELD IN MOLTEN ZONE
FOR SOME MORE PROMISING FLOAT-ZONE SYSTEMS
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heat of solidification is relatively small, the temperature and flow i
fields in the molten zone between the intermediate plane and the
melting interface is symmetrical with respect to those described.

The qualitative nature of the velocity fields associcted with the other
systems depicted in Figures 3a and 3b can be constructed with reference
to that given for Figure 3a. In Figure 3b the path length for solid
conduction from the outer surface of tne melt to the freezing interface
is reduced to take possible advantage of this fact for in-depth h:ating.
Figure 3c is presented 1s a hedge against the possibility that the
location of the intermediate planes that divide the cells in Figures 3a
and 3b may fluctuate in space about some mean location, with consequent
variations in solute appearing in the growing crystal. The idea
advanced here is that the system of Figure 3c is probably more stable
in this regard although its heat transport characteristics are less
desirable.

The description of the flow field given above borrows heavily from the
results of the prior experimenters cited and on the supporting analysis
of Hide and Titman. However, it is to be noted that the boundary condi-
tions on the exterior - arfaces of the equivalent molten zone in these
prior experiments deviate significantly from the real cases of interest
in the present investigation.

As a final observation, it is noted that the radial and axial components
of velocity within the molten zone as indicated by the measurements of
Carruthers et al are small in respect to the peripheral velocity of the

crystal. That is, g&-<< 1, a state satisfying the conditions for the

stability criterion advanced in Section 3.4. Howvever, against this, the
work of Hide and Titman predict that the radial and axial components of
velocity in local regions within the melt can approach the peripheral
speed. This being the case, local distortion of the outer surface will
result from these local dynamic effects, and the stability criterion
might be modified somewhat. Whether these effects on stability are
significant is a debatable point. We believe that they are probably

not significant, but this contention needs to be tested by experiments
of the type proposed in Section 3.6.

An analytical description of the velocity field within the molter zone
is provided by the appropriate form of the Navier-Stokes equations
together with the equation of continuity. These equations are developed
in Appendix D.

For an incompressible, steady, laminar, axisymmetric flow with material
properties independent of temperature, the Navier-Stokes equations com-
bined with the continnity equation in dimensionless form are
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The equation of continuity sivne is
— {r Vv_ ]+ T \Y = 0 (2)
or 7 sz z

We note here the anpearance of the Reynold's number, ~1 1 , a result
1]

anticipated by the dimensional analysis presented in Section 3.2.3.

Few analytical solutions to Equations la-1lc and 2 are available. Those
that are involve relatively very simple flow systems where the
constraints reduce the active variables to manageable proportions. In
principle, numerical techniques involving machine computation will serve
to achieve a solution for our cases of interest. The introduction of
the concepts of a stream function and potential function as an aid to
solution does not apply in our case for the potential function does not ;
exist in a system having vorticity, although the stream function exists.
Numerical solution to prnblems of the type we are concerned with utilize
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relaxation techniques in both time and space coordinates. The problem

statement treats the system in unstecady state (we have Lo include terms
v .

of the form %E ) and relaxes it to the steady-state solution cmploying

the appropriate initial and boundary conditions. The paper by Orszag

and Israeli revicews the work in this area.

Upon review of the literatvi¢ pertaining to solution of similar fluid
Yiow problems, one is impressed with the complex nature of possible
flows which may result. The work of Pearson\7) on the viscous tlow
between two rotating coaxial disks having infinite radii makes this
point. Even for this relatively simple system which has relatively
straightforward characteristic solutions to the Navier-Stokes equations,
Pearson shows equilibrium solutions are highly dJdepende i on the

Reynolds number based on the disk spacing which is the only geometric
dimension in the system. Moreover, the equilibrium solution in some
cases, characterizied by a higher Reynolds number, was shown to depend
on the start-up condition; that is, which disk is assumed to influence
the flow first. This analytical problem is idealized, but the result
does give an indication of the sensitivity of the flow pattern to slight
variations in the speeds of rotation of the disk.

A determination of the velocity field within the molten zoue by numeri-
cal solution of the governing equations is outside the scope of the
current program. The work presented was carried out with the objective
of gaining maximum insight into the nature of flow field short of that
provided by computer solution of the governing equations and of defining
the magnitude of the problem to be faced should computer solution be
attempted.

3.6 FUTURE WORK

In order to pursue the technical investigation beyond what has been
accomplished in this program requires: (1) a more accurate determina-
tion of the stability of the molten zone under the variety of configu-
rations and rotational rates that may have utility; and (2) a more
accurate determination of the velocity field within the molten zones
associated with each promising system. Emphasis should be placed on
achieving the latter objective.

The work accomplished clearly shows the magnitude of the difficulty
associated with a "quantum-jump" in the sophistication of analysis
represented by computer solution to the Navier-Stokes equations.
Confronted with this difficulty, it would be easy to attempt solutions
to problems without adequate knowledge whether the results were war-
ranted or valid. Accordingly, we have concluded thrt experiments are &
vital necessity to the definition of useful flow fields in the Si melt.
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Carruthers and Grasso(3) have carried out useful experiments of the
type needed. However, these experiments were limited in respect to the
stability conditions that they could examine, and the flow patterns
that they observed resulted from a boundary condition on the model of
the molten zone that was significantly different from that which exist
in a real float-zone process.

First, as regards stability, these experiments examined the influence
of perturbations which lead to distorted cross sections with a centroid
remaining on the axis only. Therefore, they did not examine the
effects of the type of perturbation that we have determined to be most
limiting as regards the stability of typical melts of interest. Second,
these experiments did not examine the influence of internal circulation
on stability.

An examination of the Carruthers and Grasso experimental results pertain-
ing to the observed circulation patterns make clear that the experimental
method did not produce truly the circulation patterns of a real float
zone. This can be seen by reference to the results presented for equal
isorotation of equal radii, simulated crystal and feed stock. These
results showed significant internal circulations of a magnitude roughly
the same as the case of equal counterrotation. From elementary conside-
rations, we know that, in the case of a melt wich a free surface, no
circulations of the type described can persist at steady state with

equal isoration. Anything other than solid body rotation of the complete
melt would give rise to shear stresses at the interfaces, a net torque
and resulting rate of change in angular momentum of the melt. The

induce currents observed by Carruthers and Grasso are the result of shear
stresses at the exterior boundary of the simulated melt induced by the
mineral oil surroundings. It seems reasonable to assume that the
presence of the oil influences the circulation patterns in all the cases
they described. To what degree the patterns they observed are different
from those of a real float-zone is moot, but their results for equal
isorotation make the translation in all cases questionable.

The purpose of experiments we propose in an on-going program would be
five fold: (1) they would test the results of the stability analyses
that we have made; (2) they would establish stability limits for system
configurations and operating conditions not anzlyzed; (3) they would
test the validity of concepts we have developed as to the nature of the
circulating currents induced in the melt by various forms of rotation;
(4) they would provide guidance for the numerical analysis and computer
solution of the velocity fields within these melts; and (5) they would
obviate some major limitations of prior experiments reported in the
literature.

A brief description of the type of experiments we propose is given in
Appendix E. The experiments involve the ‘ise of scale models and optical
tracing of the motion of observable particles suspended in the model
melt. From our examination of possibilities, we have found that a model

melt system using water with a simulated crystal radius of 2.7 x 10_3 m
(0.105 in) has useful potential of meeting the objectives stated above.
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4.0 ANALYSIS OF ECONOMIC IMPACT

4.1 SUMMARY

4,1,1 Purpose and Scope

We have considered the possible ten-year economic impact of growing large
float-zone silicon crystals in a gravity-free environment. We describe
the expected advantages of fabricating large crystals, wafers and chips,
and then present examples for the most significant crystal diameters,
characteristics and devices.

For this analysis, we have only considered the economic impact on devices
that already have a sizable, developed markct, and we have assumed re-
placement of 5 em (2 inch) float-zone and 7.6 ¢m (3 inch) Czochralski
crystals by 15.2 em (6 inch) float-zone crystals. We have not conducted
an actual volume analysis of specific agevice types, because the data-
gatheri-. g and reduction would involve an extensive effort.

The following discussion considers wafer size to be the major influence
on the ultimate chip cost. A more extensive analysis will be required
to account for the influence of space shuttle costs, power costs in
orbit, the practical (rather than theoretical) yield of good crystals,
and the actual crystal quality obtainable in a weightless environment.

The conclusions presented in our analysis assume that all of the tech-
nical and economic problems of growing and processing 15.2 cm (6 inch)
crystals in orbit will be resolved satisfactorily,

4,1,2 Introduction

It appears that crystals several times the present 5-cm (2 inch) and
7.6-cm (3 inch) diameter products currently available could be grown
in a gravity-free environment. Large diameter, high quality float-
zone crystals would provide a number of economic advantages for manu-
facturing semiconductor devices., For example:

¢ The float-zone process produces a greater volume of
acceptable dopant level for any given crystal size,

e The float-zone process generally produces higher
quality crystals.

e Large float~-zone crystals could use large diameter
feedstock, which costs less per kilogram than the
small diameter feedstock currently used in the float-
zone process.
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e The large wafers available from large diamcter crystals
would have much higher efficiencies of surface utilization,
which would lead to much greater producticn of chips per
unit area - particularly for large scale integrated circuits,

e The greater number of chips per wafer will greatly reduce the
cost per chip, because wafer processing costs are essentially
independent of wafer size.

e Large, high quality wafers will enable the production of new,
larger classe: of rectifiers, thyristors, and LSI's, and these
larger, more complex circuits will reduce the overall cost of
both finished devices and electronics equipment.

The possibility of growing large float-zone crystals in orbit presents
at least one major disadvantage that should be considered:

o The technology necessary to grow large, float-zone crystals
in an orbital environment is currently beyond the state of
the art, and considerable research and development effort
will be required to solve the technical and economic uncer-
taintier inherent in such processing.

4.1.3 Method of Economic Analysis

a. Polycrystalline Feed to Trimmed Boule., As the first step in analyzing
the value of large float-zone crystals, we have examined the cost of
converting polysilicon feedstock into both Czochralski and float-zone

crystals.

We first consider the cost of producing larger diameter feedstock and
the possible cost advantage of using such material to produce large
float~zone crystals versus smaller Czochralski crystals.

We then consider the cost of producing crystals of equal mass and equal
diameter and the value per unit mass of feedstock of the trimmed boules.

Finally, we examine the conversion efficiencies of the two processes,
with equal size feedstock, per unit mass of trimmed boule. At this
stage, the output of crystal with acceptable dopant level and resis-
tivity determines the value of each trimmed boule.

b. Trimmed Boule to Finished Wafers. The analysis of this manufactur=-
ing stage considers wafer output primarily in terms of surface area per
unit weight of trimmed boule,

c. Wafer Processing to Finished Chips. This analysis of processing
discusses the geometry of area utilization, including the output of
chips per unit area as a function of wafer diameter and the influence
of larger wafers on area utilization for large chips.
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d. Chip Processing Costs. This manufacturing stage is discussed in
terms of device complexity (as a function of the number of processing
and handling steps), device type and wafer size.

e. Market Impact., Finally, the Influence of producing large float-
zone crystals in orbit is considered in terms of current and projected
market size, device cost as a function of wafer size, and the cconomic
impact on selected device types,

4,1,4 Conclusions

There is no clear-cut cost advantage for either growing process, because
there are only marginal savings possible through the different feedstock
utilization or conversion efficiencies, In fact, the savings inherent
in each process nearly cancel out by the time each type of crystal has
been converted to a trimmed boule,

However, it appears that the number of finished chips available from
each 15.2 em (6 inch) wafer could be four tc eight times the number

of finished chips produced from the currently available 7.6 cm (3 inch)
wafers, Therefore, because processing costs are very high and are
essentially independent of wafer size, our analysis leads us to conclude
that the processing efficiencies made possible by the availability of
15.2 cm (6 inch) wafers would enable the manufacturers of silicon semi-
conductor devices to produce such devices for perhaps 12%Z to 25% of the
present cost per chip., The theoretical economic impact on the semi-
conductor industry of such savings can be extrapolated to a cumulative
ten-year value of $8 billion to $15 billion.

4.2 CZOCHRALSKI VERSUS FLOAT-ZONE FOR MASSIVE CRYSTALS

4.2.1 Introduction

This section considers the cost of producing crystals from polysilicon
feedstock, and examines:

¢ Feedstock cost as a function of diameter,
¢ (rystal cost as a function of feedstock size, and
e Conversion efficiency to trimmed boule.

4.2.2 Feedstock Cost

The cost per unit weight . ° polysilicon feedstock decreases with increasing

diameter. This results because radial deposition rates are essentially
independent of size and the cost is largely determined by capital and
energy costs for the time spent in the trichloro-silane reactor. With
these deposition kinetics, the weight of silicon produced per unit time
increases proportionally with diameter, Table 2 summarizes the average
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Polysilicon
Rod Diameter

cm(inches)

5.7 (2.25)

7.6 (3)

10.2 (4)

12.7 (5)

TABLE 2

FEEDSTOCK GROWING TIME AND WEICHT
VERSUS FINAL ROD DIAMETER

Average
Weight of Production
Length of Silicon Per Rate Per
Deposition Run 0.3 m (12") Rod 0.3 m (12") Rod
(days) (kg) (kg/day)
5.5 1.8 0.33
7 3.2 0.46
12 5.8 0.48
17 8.5 0.50

Source: Arthur

D. Little, Inc.
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S1 production rates as a function of diameter. The average production
rate for 12,7-cm (5 inch) polysilicon rod is 50% greater than the rate
for 5.7-cm (2.25 inch) rod.

The 7.6-cm (3 inch) Czochralski process currently uses the largest feed
rod diameter (12,7 cm, 5 inches), which costs $0.70 to $1.00 per gram,
while the 5.7 cm (2.25 inch) float-zone process uses the smallest rod,
which cost $1.30 to $1.50 per gram. Thus, for the earth-based process,
the float-zone feedstock 1s 50% more expensive than the Czochralski
feedstock, and the latter crystal-growing process enjoys a cost advantage.

4.2.3 Crystal Cost

If both the processes are used to grow 7.6-cm (3 inch) diameter crystals
of equal length and equal mass, we find that the Czochralski crystal costs
less because of lower feedstock cost, However, we must compare the cost
of growing a 7.6=-cm (3 inch Czochralski crystal against the cost of grow-
ing a 15.2-cm (6 inch) float-zone crystal in orbit--and only consider the
growing process itself. Then, we find that both processes use approxi-
mately the same diameter feedstock, which would eliminate the feedstock
cost advantage of the Czochralski process.

4,2.4 Conversion Efficiency

If 7.6~cm (3 inch) Czochralski crystals are compared with 15.2-cm (6 inch)
float-zone crystals, we must consider what percentage of polysilicon is
converted by each growth process to the form of a trimmed ingot (or boule)
that has been cropped and ground to a specified diameter and length with
the desired resistivity for further processing.

Figures 4 and 5 illustrate the geometry of crystal and ingot for the
Czochralski and float-zone processes, respectively.

The Czochralski process is used to produce uniform P-type material and
both broad-range (2.5:1) and narrow-range (1.7:1) N-type material. When
all of the crystal-growing and machining losses and recycling of material
have been accounted for, the weight of acceptable P-type trimmed ingot
material is about 85X of the initial charge. For the widely used N-type
crystals, the material with a broad resistivity range provides about 652
acceptable trimmed ingot, while the narrow-range material provides about
45% of the initial polysilicon charge in the form of usable trimmed ingot.
(The charge weight was assumed to be 7.5 kilograms.)

Industry experience with 5,7 cm (2,25 inch) float-zone crystals indicates
that a trimmed ingot provides 75-80% acceptable material from a similar
initial charge weight (7.5 kg). This compares favorably to the yields

of the Czochralski process, depending on the type of crystal grown,
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Because the length of float-zone mate: ial lost to ingot cropping may equal
two crystal diameters, sm~1ll charge wuights would give unacceptable yields
with 15.2-cm(6 inch) diameter crystals. Figure 6 shows the theoretical
vield of trimmed ingot available from 7.6-cm (3 inch) and 15.2-cm (6 inch)
float-zone crystals, with charge weights ranging from 7 to 100 kiloprims,
(Charges of 50 to 100 kilograms would be required te increase the yleld
from 15.2-cm (6 inch) crystals to 75-87% acceptable material.

The 15.2-cm (6 inch) float-zone crystal would provide nearly four times
the weight of acceptable trimmed ingot per unit length that is available
from a 7.6-cm (3 inch)crystal--Czochralski or float-zone.

4,2,5 Conclusions

At this point, it would appear that 15.2-cm (6 inch) float-zone crystals
grown in orbit would be perhaps four times as valuable as 7.€-cm (3 inch)
Czochralski crystals grown on earth. However, the uncertainties involved
with growing the 1 rger crystals in orbit may ultimately negate the theo-
retical advantage that we have just described, Thus, to this stage in
the manufacturing process, neither process has a clear-cut cost advantage,
In fact, the average raw material cost is such a small percentage (7-"%)
of the cost of a finished device that any savings to this point may have
only marginal impact on the ultimate cost of finished chips.

4.3 EFFECTS OF LARGE CRYSTALS ON WAFER FINISHINGC

Industry experience has shown that the number of wafers per unit length
that can be sliced from a trimmed boule decreases with increasing boulc
diameter. This results in part from the facy that larger diame.er wafers
must be thicker to survive mechanical handling during finishing aad chip
processing. Also, saw thicknesses must be increased with larger diameters,
which increases kerf losses.

With present technology, approximately eight polished wafers are obtained
per centimeter (20 per inch) of trimmed ingot length for 7.6-cm (3 inch)
diameter crystals, We have estimated that apnroximately five wafers per
centimeter (12 per inch) could be expected from 15.2-cm (6 inch) crystals.
Wafer thickness was increased from .05 to .08 cm {(,018 to .030 inch) and
saw kerf thickness from .04 to .08 ecm (.015 to .030 inch).

Wafer breakage and material losses occur during sawing, lapping, polishing
and other wafer finishing procedures. The material losses per unit area
should nct be influenced significantly by wafer size due to the thicker
wafers to be used. We believe that the increased wafer thickness should
permit equivalent yields through sawing an! lapping (82%) and polishing
(85%) steps.
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Thus, the cost differential between the 7.6-cm (3 inch) diameter wafers
and the 15.2 cm (6 inch) diameter wafers is reflected in the wafer arca
per unit length and area per unit mass of trimmed boule. The larger
wafars generate 2.4 times the area per unit length and 0.6 times the area
per unit mass of boule. Without specific information about the comparative
costs of growing 7.6-cm (3 inch) Czochralski crystals on earth and 15.2-cm
(6 inch) float-zone crystals in orbit, it is impossible to make a quanti-
tative estimate cof the relative costs per uhit area. It is obvious that
the larger space-grown crystals will cost more per unit length--probably
more than the area differential per unit length. Thus, a cost advantage
or value of large wafers will probably be found in reduced device fabri-
cation costs on the larger wafers.

4.4 AREA UTILIZATION BY FINISHED DEVICES

A geometric analysis of the useful area available from both 7.6—cm (3 inch)
wafers and 15.2-cm (6 inch) wafers——summarized in Table 3 -~ indicates

that the larger wafer can enclose from five to eight times the number of
individual chips than the smaller wafer can. Thus, the value of the larger
wafer is even greater than the simple 4:1 ratio of surface areas would
suggest.

Two factors make the srea converted to chips smaller than the nominal area
of the wafer. A rim, usually C.32 cm (0.125 inch) wide, cannot be used
because it is damaged during wafer handling. The percentage of rim area

to total area decreases with increasing wafer diameter. Secondly, square
or rectangular chips do not fill a circle completely. If any portion of

a chip intercepts the outer perimeter, it is unuschble. The efficiency

of utilizing the enclosed area also improves with increasing wafer diameter.
This latter factor is particularly important for the larger chip sizes,
which fit inefficiently onto smaller wafers.

4.5 CHIP PROCESSING COSTS

Handling and manufacturing costs for wafer processing have proven to be
almost independent of wafer size. Thus, not ouly does the efficiency of
surface utilization increase with wafer diameter, the processing costs rer
unit area decrease dramatically with larger wafer diameters.

The cost of process:ng a wafer or producing a finished de ice is directly
related to the device complexity. Figure 7 illustrates .he average

production cost (including overhead) of wafer processing as a function of
complexity, expressed by the number of masks needed to process each wafer.

The lin~ar relationship exists because the major element in the cost per
wafer 1s the labor needed for masking and diffusion transfers. For example,
the process for producing Metal-Oxicd2-Semicon uctor (MOS) Larye-Scale Inte-
gration (LSI) requires nearly 100 transfers cf wafers to accomplish the

5 to 7 masking steps. Complex bipolar integrated circuits may require up

to twice as much labor cost for handling, transfers, loading of processing
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equipment, inspection and test, because of the 9 to 12 m sking steps and
other procedures. The labor content ranges from 2.5 to 5 manhours for
- cocessing to the point of beirng cut into individual chips.

As indicated in Figure 7, bare wafers have an average value of approxi-
mately $6, while processing costs raise the wafer value to $80 to $100.

It is evident that rsw material cost is a very small peicentage of total
Jinished device cost, except for the most simple devices. The principal
savings or value derived from using large diameter wafers stem from reduced
processing costs per unit area, because wafer processing costs have his-
torically proven to be essentially independent of size. It is assumed
here that wafer processing costs will not increase markedly in going to
15.2 cm (6 inch) diameter Secondarily, the efficiency of utilizing area
increases with wafer diameter for the reasons cited in Section 4.4. Thus,
the number of chips produced per wafer increases faster than a simple
area ratio would predict. The cost of a finished chip produced on the
15.2-cm (6 inch) diameter wafers should be about 1/5 to 1/8 the cost of

a chip produced on 7.6-cm (3 inch) diameter wafers.

R S ke dP RN

4.6 MARKET SIZE, GROWTH AND ECONOMIC 1MPACT

The 1974 demand for silicon wafers——valued at about $1.00 per square inch
(6.5 square cm)-—is currently about 200 million square inches (1.3 billion
square cm). This demand is growing at an average rate of 20% per year,
and therefore is expected to increase sixfold in ten years. Thus, the
prcjected cumulative ten-year market is 25 times the current demand or
about 5 billion square inchec {32.3 billiva square cm)-—-a market of about
$5 billion for raw wafers.

The 1974 production consists of some 40 miilion wafers and about 60% (or
24 million wafers) were processed to finished devices. At this time, a
finished processed wafer repre_ents an average saleable value of approxi-~
mately $40, so that processing could represent a total annual vzlue of
about $1 tillion.(A volume analysis for all devices would be necessary

to establish the actual value add2d by processing each year.)

To estimate the theoretical economic impact of substituting 15.2-cm (6 inch)
wafers for 7.6~cm (3 inch) wafers, we must assume that the per wafer pro-
ces: ing costs remain essentially the same, and that the larger wafers

will provide four to eight times the number of finished devices., (Of

this also assume= equipment capable of processing the larger wafers, and
the hypothesis of equal processing yields.) The annual economic impact

of the 15.2-cm (6 inclh) wafers could then be 75-88% of $1 billion, or
$750-$880 million. In fact, it is only reasonable to consider replace-
ment of about one-third of the smaller wafers with the large diameter
wafers, This would lead to an annual impact of about $250-$290 million,
and a cunulative ten-year impact of $6.7-$7.3 billion. We believe that the
economic impact would be realized primarily through reductions in the

price of various finished devices, rather than in the development of a
larger maiket.
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An effect, for which there is currently no dollar value, is the possibility
of producing much larger, more complex devices on the larger wafers, which
will greatly reduce the cost per functica in completed systems and thus
reduce the overall c st of finished electrsnic packages. Historically,
such impact has shown up as 10-40% reduction in materials and labor costs
which are generally 25-35X of finished package costs. At this point, an
estimate woul. be rather tenuous, but it could amount to 2-32 (10Zx25%).
Considering that production of semiconductor devices supplies an estimated
$35 billion in electronic equipment each year, this could result in a
savings of $700 million to over $1 billion a year. Loag-term results over
the decade could ultimately be $15-25 billion.

In actuality, such a theoretical savings can be reached only after con-
siderable research and development to s-tisfy all technical and economic
problems. Currently, all of the crystal growth and wafer finishing pro-
cedures assumed in this analysis are beyond the state of the art.
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APPENDIX A

THE STABILITY OF A ROTATING, CYLINDRICAL MOLTEN ZONE

In this appendix we consider the stability of cylindrical molten zone
rotating as a solid body. The zone 18 subjected to two forces: surface
tension, which tends to maintain the cylindrical shape, and centrifugal
force, which tends to destabilize the 2one. We assume that gravity is
zero or, at least, negligibly small. The method adopted is to consider
a tiny displacement of the equilibrium surface shape and to see whether
or not the distortion grows without limit.

First, we consider the distortion to be a function of radium alone. In
Figure Al we show a circle which represents the undistorted cross section
of the cylinder with the equation (in polar coordinates)

r=a (1)

along with a cross section of the distorted cylinder represented by
the equation

r=a+e¢cos d® (2)

The pressure on the undisturbed surface which arises from centrifugal
force is

2 w2a2
p=wpf 1:dr-p2 (3)
o

The destabilizing pressure is the change In p due to the change in the
shape of the surface and for small changes is given by

Ap = pwert (4)
or
2
Ap = pw a € cos B (5)

Next we must compute the stabilizing torces produced *y the change of
curvature of the surface. It is evident from Figure Al that the greatest
curvature of the disturbed surface is at the greatest radius, so the

change of curvature does, at least, tend to restore the cross section to
circular shape. The change in the other principal curvature also produces

a restoring force dependent on the axial height of zone, but we will neglect
that in this calculation.
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FIGURE A1 CROSS-SECTION OF MOLTEN ZONF IN PERTURBED AND UNPERTURBED STATES
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The handiest way to calculate the change in curvature is to use a formula

r2 + 2R':Z -~ rr"

(6)
2 + 11332

L.
R

that gives the curvature of a curve expressrd in polar coordinates,
r = r(6). Primes denote differentiation with respect to 0. We have

r=a+¢c cos 26
r' = -2¢ sin 26 ¢))

r" = ~4e cos 296

and, to first order,

rz + 2:'2 -r" = :«12 (1 + éf— cos 29) (8)
4
(1'2 +r 2)3/2 = a3 (1 + —3;5 cos 26) (?)

Equations 8 and 9 may be substituted in Equation 6 to give

a2 (1 + %E cos 29)

1
. (10)
R 33 (1 + 3e cos 29)
a
1, l(14-3-‘-coa ze) (11)
R a a
whence
1l 3e
A(—R~) = =5 cos 20 , (12)
a
At the liwmit of stability
1
°M’§) = Ap (13)
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So, from Equations (5) and (12),

_3__6_5_99_;__2__6_ = pwza € cos 20 (14)

Thus, to ensure stability, the dimeusionless group known as the Weber
number must satisfy the inequality:

w2a3
2_0.3_. <3 (15)

Next, we investigate the situation which occurs when the cylindrical
zone of liquid suffers an unsymme rical iisplacement in a direction
normal to its axis, say in the direction of the x-axis. We take the
equation of the disturbed cylinder to be:

(x - € cos kz)2 + y2 = az, (16)

L
where k= F

and h is the height of the zone. Figure A2 shows the cylinder with and
w' thout the perturbation as well ss the system of axes employed.

To first oruer Equation (16) is

xz - 2xe cos kz + y2 = 82 17)
or

2 2

r - 2ac cos kz cos 6 = g (18)
whence we find

2rAxr = 2ac cos kz cos 9 (19)

Equation (19) may be substituted into Equation (4) to give the destabiliz-
ing pressure

Ap-pwz ae cos kz cos 8 (20)

47
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FIGURE A2 CYLINDRICAL MOLTEN ZONE OF RADIUS (a) AND HEIGHT (h),

BEFORC AND AFTER PERTURBATI(C I. THE COORDINATE
SYSTEM USED IN THE STABILITY AWALYSIS IS ALSO SHOWN.
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As before, the stabilizing pressure is obtained after calculating the
change in curvature. In this case, we consider the curvature in a plane
passing through the z-axis

1
e = (21)

From Equation (18), we find

3 L _ Kk ¢ sin kz c0s © (22)
a3z
2
—a—-;- = - k%c cos kz cos 6 (23)
9z
SO,
% - kzecos kz cos 8 (24)

Since this curvature is zero in the case of the unperturbed cylinder,
the right hand size of Equation (24) is the change in curvature which
gives rise to a stabilizing pressure due surface tensicn. We have, for
the limit of stability

okze cos kz cos 0 = pm2 a et cos kz cos 0 25)

and hence we obtain the stability criterion for the height of the
rotating cylindrical melt in terms of the Weber number as follows:

2 .2
push 2 (26)

or

ua_ n2(§ 2 27
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‘ APPENDIX B

EQUATIONS GOVERNING THE TEMPERATURE FIELD WITHIN THE MOLTEN ZONE

The purpose of this appendix is to set forth the equations governing the
compinad convective and conductive heat transport in a melt circulating
in laminar flow. Appropriately cylindrical coordinates are chosen (r,
8, 2) with:

Vr, Ve, Vz = velocity components
k = thermal conductivity
q" = rate >f heat generation per unit volume
T = temperature
t = time
p = density
u = viscosity
i The basic differerntial equation governing the thermal behavior of the

molten zone results from application of the energy equation to an ele-
mental volume of dimensions dr, rdJ, dz. For material properties assumed
independent of temperature, the equation satisfied by the temperature is

2

2 .
13 far)y, 1 271 3°7T{ oCplo 2 2
k[r oy ( ar)+ 7 2 + 323] . [ar (r V. T) + 5 (v, ) + 52 (£ Y, 'r)]

' 9
+q"" pCp 3% . .. (1)

For the axisymmetric case, with an opaque melt at steady state, Equation (1)
reduces to

2
13 ((3T), 3T{ oCp |3 2
[r or (r 3r)+ z2] rk [8: v, D+ %5 {r V. T)]

]
o

)

or alternately,
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L
"

k ar r or r z 92 9z

2 2 v VT v
[ﬁ-l+%—'r-+3—2!]-°—c£['r9—l+v My I v a_'r+,ra_z_]_ 0 (2b)

3z

Introducing the condition for continuity of matter
2 v)y+Z(v) =0 (3
or T dz z

reduces Equaticn (2b) to

4)

a2 1Qr
Nl'-]
| IS |
[}
o

2 2
3 T ,14dT 3T | _ec 1 S
[ 2+rdr+ 2] k[vrar?‘z
or ez

By substituting the non-dimensional variables

' ¢
r = —
N
i z
z =
1
1 ]
T
T T
o]
v
]
LA
r 1%
. v

where

r, = radius of crystal
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1 To = melting or freezing temperature

W= angular velocity of rotation of crystal

Equation (4) becomes

2 2 2
3% T 1 BT T pcpr” w1 , oT' , 3T'.] -
[ ar,2 + r' ar' + 32'2 ] - k vt or' + vz az" | o

The bSoundary conditions for the molten zone are

" A - ‘3_T §_'_r
aq -€07 k ( 5 Sin 0+ 2 €08 é) (6)

for the exposed surface of the melt, and

oT

3T _ oT
- k3 I2 cos 6 = -k ]1 cos 8+ L up ¢))
2N R O (8)
Jsr '1 ar '2
Tl = TZ = T = To 9
for the freeziug interface, and
oT r 2
aT 1
k — cos 8 = k = cos 8 + L —
2z |2 3z 11 08 R T (10)
aT aT
sl el (11)
Tl = Tz ua T = ']_'o (12)




i
-
-

A A W B s R

where
(1)
q, = the oncomjng radiant heat flux per unit area normal to
the surface of the molten zone.
0 = angle between the outward directed normal to the bounding

surface and the positive z direction.

u = rate of crystal growth cr pulling rate.

r, = radius of feed stock
wy, = angular velocity of rotation of feed stock.
subscript 1 refers to the melt side of the interface

2 refers to the crystal or polycrystal side of the
inteiface

The solution to Equation (5) subject ..~ the boundary conditions (6) through
(12) can be gained by application of numerical techniques and computer
calculaticn provided that the velocity field (V; and V; as a function of

r' and z') are known. The solution is a description of the temperatures

in the melt as a function of r' and z', or the temperature {field.
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APPENDIX C

KEDUCTION OF AZTMUTHAL TEMPERATURE GRADILNTS BY ROTATION

We consider the silicon crystal, the molten z.one and the feed rod to be
a long cylinder which is rotating as a solid body. We assume thct the

cylinder is subject to surface heating which is not uniform in azimuth

and ask what effect rotation has in reduring the azimuthol temperature

gradient thus produced.

The equation satisfied by the temperature T in steady state is

V « kVT - Cp pv VT = 0 (1)
where
k is thermal conductivity, watts ent k7L
1..-1

Cp is heat capacity, joules g ~ K
p 1s density, g Cm-3

v is velocity vector, cm sec
The velocity is in the 6-direction only and has the component

Ve = wr (2)

where

w 1s the angular velocity, radians sec-1

r is the radius, cm

Next, we assume the properties of the material to be constant and write
Equation 1 in cylindrical coordinates:

2
ko ( ar\, k a3’ _ aT
T or ( 8r)+ 2 C, pw 0 3

It seems simplest to adopt an indirect procedure at this juncture in the
study of the azimuthal gradient problem. We assume a sultable form for
the temperature distribution and derive the heat input from it by

comput ing the radial gradient at the surface. We let

T = y(r) 10 (4)
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and substitute this expression in Equation 3 to fiad the function y(r)
which gives the dependence of temperature on the radius. After the
substi*ution is made and some obvious algebraic manipulations are per-
formed, Equation 3 reduces to a form of Bessel's equatioa:

iC pw .
afoa\_ [, %" z) ]
rdr (rdr) (1+ N r v 0 (5)

/

The solution is seen to be

y = - T Jl(\/-'i'xr), (6)
where
C pw
K = —{%—- (7

and T0 is an arbitrary constant (degrees C) which relates to the ampli-

tude of the gradient.

The Bessel function c¢f complex argument appearing in Equation 6 is
customarily expressed in terms of Kelvin functions. We fina the temper-
ature distribution to be

v om i@
) To(ber1 Kr + 1 bei1 Kr) e (8)
The radial heat flux q" (watts cm'z) is given by the formula
" = _ H
1 k ar |a (9
where a is the radius of the cylinder, cm.
From Equation 8 we see that
"w o - 1 -1
q - k TC {-TET—-K(bero Ka + 1 beio Ka)
1
+ a (ber1 Ka + 1 bei1 Ka)} (10)
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It is useful co consider the magnitude of the ratio of the surface
temperatuvre, T s to ti.e heat flux. From Equations 10 and 8, it may be
seen that

b12Ka+be12 \
Kk 2 2 1)
(ber Ka + bei JKa ber Ka) (%ei Ka - ber Ka bel Ka)
1 o o + 1l
Ka

V2 Ka ,

For short we let the radical appearing in Equation 11 be called u(Ka),
which function is tabulated in Table Cl. For small values of Ka, the
function is seen to be equal :o its argyument. For large values of Ka,
one could appeal to the known properties of the Kelvin functions to
evaluate u(Ka), but it is easler to return to Equation 5 and obtain an
approximation directly.

First we make the transformation

z = 'y (12)

in Equation 5 to obtain the equation for z:

2
-‘3-%-(-—12—+1x2 S =0 (13)
ér 4t

For large values of Kr we may drop the term 3z/4r2 in Equation 13 to
obtain the simpler equation

2
i—-—’z——mzz = 0 (14)

dr
whose solution is readily seen to be

1+ Ke

z = Ae 2 (15)

where A 1s an arbitrary con~tant. Therefore, the temperature T is given
by the formula

%;1 Kr + 16
T = e 72 (16)

A
vr
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Function to be Used in Determining Azimuthal Temperature Gradients
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TABLE C1

u(Ka)
0.00000
0.49871
0.96090
1.26132
1.33012
1.27218
1.19586
1.13960
1.10576
1.08689
1.07595

S
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O VIRV, Bl (U
Vva V2  2Ka

(17)

The magnitude of the ratio of surface temperature to heat flux is thus
found to be

Kk ¢/1 - -— Kkl - —=—

to first order.

While the results we have derived so far are useful to predict the azi-
muthal temperature gradient to be expected when the azimuthal distribu-
tion of heat Ilux is known or can be estimated, it may be of more value
in the preliminary stages of syste.. design to consider the ratio of the
temperature gradient which appears in the absence of rotation to the
gradient obtained with rotation irn the presence of the same azimuthal
distribution of heat flux. This ratio, which we call the smoothing
factor f, is given by the relation

K a
u(Ka)

(19)

For large values of Ka the smoothing factor is given by the approximate
formula

1
Ka ~ ——

2vV2

For values of Ka > 4, this approvimation produces less than 17 error.
In Table C2 are shown the values of the sioothing factor f for Ka < 5.

f = (20)

In order to evaluate Ka, we use the fcllowing values to describe the
physical properties of silicon:

k = 0.22 em rgL
p = 2.2 ¢g cm—3

o = 720 x 107 N cm -

¢, = 1.r44 3 g L k7t
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and we use the Weber number, given by the ratio

3 2
N = 22 ¥ (21)

w a

to determine the rotation rate w. Combining Equations 21 and 7, we may
write

1
%) :
Ka = o (o p N, a) (22)
Finally, we take Nw = 1 and find from Equation 22 that
1.
g B
Ka = 13.7429 2  (a in cm) (23)

For a > 1 cm, it is clear that the smoothing factor can be taken roughly
to be equal to Ka. Some values of the smoothing factor f and corres-
ponding rotation rates as a tunction of crystal radius a are shown in
Table C3. In spite of the low rotaticn speeds, the smoothing factors
are all quite large, a fact which may be attributed to the rather low
thermal conductivity of the silicon near its melting temperature.
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Smoothing Facturs and Rotational Rates for a Weber Number of Unity

a, cm

10
15
20
25
30

TABLE C2

S .oothing Factor

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

TABLE C3

20
24
27

30
32

60

f
1.0000
1.0026
1.0407
1.1892
1.5036
1.9651
2.5087
3.0713
3.6174
4.1403
4.6471

rpm

15.5
5.5
3.0
1.9
1.38
1.05




EQUATIONS GOVERNING THE FLOW FIELD WITHIN THE MOLTEN ZONE

In this appendix we set forth the equations governing the circulation of
the melt in laminar flow. They are the Navier-Stokes equations ard the
equation of continuity appearing widely in the literature. Appropriately,
a cylindrical coordinate system (r, 6, z) is chosen with

v,V

r Vz = velncity components

g°
p = density
u = viscosity
Axial symmetry, incompressibility an. steady state is dictated. Gravity
forces and variations in material properties with temperature are

assumed to be negligible. Under these conditions, the Navier -Stokes
equation combined with the continuity equation, is

w Ve2 BVr a0 BZV 1 BVr Vr azvr
p V. — - —+V — - 2L -———5+~—-—~§-+——- (la)
T ar r Z 3z ar 2 T 3r 922
2 2..
v, VvV v\ 3%V v, 7 3%
p(v B x 0,y —(i)= M -——e+-1---—Q-—g.+—-——‘i (1b)
rar r Z 3z ar2 T oar 322
v avz 5P azvz 1 3Vz azvz
p {v. —Z2+v E)= -4, +- 2+ (1c)
or ‘ 8z oz 3r2 Toar 322
The continuity equation alone 1is
3 3 -
o (rvr) + o= (1Y) 0 (2)
with the substitution of
! r
r = ;—
1
' FA
z = -
1
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r r r 92z o rlz mlz r
E [} ] ' ]
) a"vr L v, ;xzvz
+ 7 ,2+—-,——,'-—,£2‘+——.'2‘ (3a)
p r1 wl or r or r oz
[ ] ] L (]
C3V, V.V , 3V
v+ 2wy — -
or r a9z
1 [ L
) 32y W, v azve
Y = v~ |2+ ' (3b)
pr, w Ir r 9dr r 3z
1 1
L ?
POV, v, 1 -
V. —5+V — = - ——= g 4
r or z 9z pr w 2 9z
1 71
1 ] 1] L
u 32Vz 1 BVz azvz
|2+-T—-—r+——,—2- (3C)
pr w or r odr dz
1 1 -

0 [ ) 9 ' '
—-—-,—(r v)+-——,-(r v)- 0 (4)
or r 9z z
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We note here the existence of the Reynolds number, ——— | a result
u

anticipated by the dimensional analysis presented in Section 3.2.

Few analytical solutions to Equations 2 and 3a-3c are available. Those
that are 1r volve relatively very simple flow systems where the
constraints reduce the active variables to manageable nroportions. In
principle, numerical techniques involving computer computation will
serve to achieve a solution for our cases of interest. The introduc-
tinr of the conceots of a stream function and potential function as an
ald to solution .oes not apply in our case for the potential function
does not exist in a system having vorticity, although the stream func-
tion exists, ' imerical solution to problems 2f th2 type we are concerned
with utilize relaxation techniques in both time . | space coordinates.
The problem statement treats the system in unst- «dv state (we have to

IV
include terms of the form 7— ) and relaxes it to the steady-:tate solu-

at
tion employing the appropriate initia' and -oundary conditions. 1In our
case, the initial conditions would be Vr = V8 = Vz = 0 everyw.ere except

at the boundaries.

The boungary conditions are:

At the cylindrical surface, r : f(2)
| S 0(;L + ;%:)
1 ™2

P = static pressure

where:

g = the coefficient of rurface tension
R1 and R2 = the principal radi. of curvature of the surface
of the melt zone under conditions of insurea
stability.

At the boundary z = 0 f{assumed plane)
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APPENDIX E

SOME PROPOSED EXPERIMENTS

In order to model the behavior of a stable Si melt in the spacecraft
environment, we should ideally produce an earth~based test system in
which the inertial forces Jdue rotatfion are about equal to the surface
tension forces and each is large in respect to gravity forces. This
m2ans that the dimensions of the model melt must be relatively very
small. Backing off from the ideal, we might establish tentatively the
condition that the inertia, surface tension and gravity forces are all
the same magnitude in the model melt. This would establish a reasonable
upper bound on the size and the magnitude of the circulating currents
that we can expect to produce in the laboratory.

For the reasons stated above, our model melt should meet, as a minimum,
the conditions:

3 2 .
= =0fa uw _
N, = Weber No. = 1 (1)
N, = Bond No. =282 - @
b,
a
a2
NR = Reynolds No, = & as Zarge as possible (3)

"

To meet the condition expressed by the limiting value of the Bond number,
we wish to select a fluid substance that has the smallest pnssible ratio
of p /o in order to experiment with a model having the largest possible
dimensions. The Weber number limit for stability coupled wi h the desire
for a model melt having the largest possible dimensions also dictates the
selection of a fluid having a muimum value of p /o, The desire for a
large Reynolds number, on the other hand, calls for a large value of

p and a small value of u. In expressing the Reynolds number in terms

of the Weber number, we get

HR = V[Nw apo Ju

and with Nw = 1

64

;
e e AR T LR BB W IS

e P A



A 4

As a result of investigation into substances that might bes® meet the
conditions above and are, in addition, readily available, easy to use,
and best be transparent for flow visualization studies, we find that
water appears as a good candidat.:. For water at room conditjons:
p=1x 10° Kg/m3 =1 gm/cm3
o=17.2 x 10-“2 N/m = 72 dyne/cm

p=1lecm =1x 107 Kg/m-sec

0 o -3
= N —_— = —_— = 2.7
a « B oe V[(l) e 1x10 " m

NR = fap v [u = 44]
NRu

ws= —5 = 60 rad/sec = 573 rpm
pa

A Reynolds number of 400 is down by a factor of about ten from those
values that can be achieved in stable Si molten zones in a space-based
process. Examination has revealed that a model system with mercury makes
possible experiments at a maximum Reynolds number of 2300, Stability
and gravity limits restrict the radius of the mercury model tu some value
lers thar. about 0.19 cm, and certainly flow visualization studies with
mercury will be less rewarding.

However, from what we know now, it is not clear at what value of Reynolds
nunber the optimum benefiis from rotation is to be achieved. One view
contends that the optimum lies with larger Reynolds numbers. This view
is based on the assumption that the 9haracter of the flow would have a
certain similarity independent of Rdynolds number in the Reynolds number
range of interest. The assumption of the more circulation the better

may still be true, but as the entire character of the flow may well change
in the Reynolds number range of interest, this simple assumption is in
question. In fact, flows characterized by larger Reynolds numbers may
have shear waves and other undesirable periodic features. It seems more
reasonable, in the light of our currocnt knowledge, to consider utilizing
better def "aed and understood flows even though they may not represent

the optimum that might eventually be achieved. In this light, expcriments
wi.h water still appear to be very useful.
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