416 research outputs found

    Improving comfort and energy efficiency in a nursery school design process

    Get PDF
    A new nursery school in Milan was designed in the framework of a national research about low-energy buildings in temperate climates. The design of the case study started from a bioclimatic-approach, considering relationship between building envelope and sun path. In particular, orientation and morphology of the school are optimized (i.e. the building shapes improve solar control; classrooms and offices face South, services face North), the envelope is thermally efficient in both its opaque and transparent parts and overhangs are dimensioned to ensure solar gain in winter and to avoid direct solar radiation during summer season. A set of solutions for optimizing both energy efficiency and comfort conditions has been assessed. A floor radiant system, fed by a groundwater heat pump, has been foreseen and combined with a primary air ventilation system, equipped with heat recovery and managed by CO2 sensors. The school will be also equipped with opening window detectors and presence detectors, coupled by daylighting sensors, for controlling both illumination and thermal energy supply (hot water circulation in the radiant floor pipes and primary air cycle). Further, RE has been integrated in the design for hot water production by evacuated solar collectors placed on the roof of the higher block. As a result, a dynamic simulation made by VisualDOE software assessed 20 kWh/mÂČ of energy heating demand: this value is below national standards foreseen from 2009, referring to the recent Italian implementation of the Energy Performance Building Directive (EPBD)

    Improving Energy Efficiency Through Artificial Inertia: Use of Phase Change Materials in Light, Internal Components

    Get PDF
    Phase Change Materials (PCM’s) are characterised by a large thermal capacity and by melting temperatures close to those associated with human comfort. Thanks to the “artificial inertia” they can give a building, they can be used in components such as wallboards, floors, etc. in order to: - store free heat gains during winter days and release energy during the night; - reduce overheating risks in summer, especially in well-insulated Structure / Envelope constructions (Str/En) with poor thermal capacity (lightweight construction), thanks to the peak-shaving effect; - store off-peak energy – both in winter and summer – in order to have, during the day, a warm / cool surface that contributes to irradiative comfort in winter / summer. An extensive experimental campaign was set up in Ancona (I) and GĂ€vle (S) during the EU-FP5-funded research called C-TIDE (Changeable Thermal Inertia Dry Enclosures), involving Politecnico di Milano, UniversitĂ  Politecnica delle Marche, BMG and three SME. Different configurations were studied and tested on site, allowing to understand the potential for integration of hydrated salt PCM’s in lightweight floors and internal partitions. The experimental campaign included: - prototyping a specific packaging system based on aluminium pouches (the “PCM blanket”); - testing the blanket – both in wall and floors – in experimental boxes with controlled temperature conditions; - testing the implication of sandwiching the blanket in a traditional plasterboard wall from the point of view of assembly procedures, time, everyday use, etc. The results, which were supported by mathematical modelling using the FDM method, show a good potential for integration of PCM’s in light plasterboard components. PCM’s work as a thermal flywheel, reducing the peak loads (for heating and / or cooling) and energy consumption

    Discovery probabilities of Majorana neutrinos based on cosmological data

    Get PDF
    We discuss the impact of the cosmological measurements on the predictions of the Majorana mass of the neutrinos, the parameter probed by neutrinoless double-beta decay experiments. Using a minimal set of assumptions, we quantify the probabilities of discovering neutrinoless double-beta decay and introduce a new graphical representation that could be of interest for the community

    Discovery probabilities of Majorana neutrinos based on cosmological data

    Get PDF
    We discuss the impact of the cosmological measurements on the predictions of the Majorana mass of the neutrinos, the parameter probed by neutrinoless double-beta decay experiments. Using a minimal set of assumptions, we quantify the probabilities of discovering neutrinoless double-beta decay and introduce a new graphical representation that could be of interest for the community

    The olivine-dominated composition of the Eureka family of Mars Trojan asteroids

    Get PDF
    We have used the XSHOOTER echelle spectrograph on the European Southern Obseratory (ESO) Very Large Telescope (VLT) to obtain UVB-VIS-NIR (ultraviolet-blue (UVB), visible (VIS) and near-infrared (NIR)) reflectance spectra of two members of the Eureka family of L5 Mars Trojans, in order to test a genetic relationship to Eureka. In addition to obtaining spectra, we also carried out VRI photometry of one of the VLT targets using the 2-m telescope at the Bulgarian National Astronomical Observatory - Rozhen and the two-channel focal reducer. We found that these asteroids belong to the olivine-dominated A, or Sa, taxonomic class. As Eureka itself is also an olivine-dominated asteroid, it is likely that all family asteroids share a common origin and composition. We discuss the significance of these results in terms of the origin of the martian Trojan population

    The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures

    Full text link
    The CUORE experiment is the world's largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE

    Search for Neutrinoless Double-Beta Decay of 130^{130}Te with CUORE-0

    Get PDF
    We report the results of a search for neutrinoless double-beta decay in a 9.8~kg⋅\cdotyr exposure of 130^{130}Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV5.1\pm 0.3{\rm~keV} FWHM and 0.058±0.004 (stat.)±0.002 (syst.)0.058 \pm 0.004\,(\mathrm{stat.})\pm 0.002\,(\mathrm{syst.})~counts/(keV⋅\cdotkg⋅\cdotyr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is 2.9×1024 yr2.9\times 10^{24}~{\rm yr} and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130^{130}Te and place a Bayesian lower bound on the decay half-life, T1/20Îœ>T^{0\nu}_{1/2}>~2.7×1024 yr 2.7\times 10^{24}~{\rm yr} at 90%~C.L. Combining CUORE-0 data with the 19.75~kg⋅\cdotyr exposure of 130^{130}Te from the Cuoricino experiment we obtain T1/20Îœ>4.0×1024 yrT^{0\nu}_{1/2} > 4.0\times 10^{24}~\mathrm{yr} at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mÎČÎČ<270m_{\beta\beta}< 270 -- 760 meV760~\mathrm{meV}.Comment: 6 pages, 5 figures, updated version as published in PR

    Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in 130^{130}Te with CUORE-0

    Full text link
    We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta (0ÎœÎČÎČ0\nu\beta\beta) decay in 130^{130}Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE-0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques developed for CUORE, a next-generation experiment scheduled to come online in 2016. CUORE-0 is also a competitive 0ÎœÎČÎČ0\nu\beta\beta decay search in its own right and functions as a platform to further develop the analysis tools and procedures to be used in CUORE. These include data collection, event selection and processing, as well as an evaluation of signal efficiency. In particular, we describe the amplitude evaluation, thermal gain stabilization, energy calibration methods, and the analysis event selection used to create our final 0ÎœÎČÎČ0\nu\beta\beta decay search spectrum. We define our high level analysis procedures, with emphasis on the new insights gained and challenges encountered. We outline in detail our fitting methods near the hypothesized 0ÎœÎČÎČ0\nu\beta\beta decay peak and catalog the main sources of systematic uncertainty. Finally, we derive the 0ÎœÎČÎČ0\nu\beta\beta decay half-life limits previously reported for CUORE-0, T1/20Îœ>2.7×1024T^{0\nu}_{1/2}>2.7\times10^{24} yr, and in combination with the Cuoricino limit, T1/20Îœ>4.0×1024T^{0\nu}_{1/2}>4.0\times10^{24} yr.Comment: 18 pages, 18 figures. (Version 3 reflects only minor changes to the text. Few additional details, no major content changes.
    • 

    corecore