800 research outputs found

    Improving the Visible and Infrared Contrast Ratio of Microshutter Arrays

    Get PDF
    Three device improvements have been developed that dramatically enhance the contrast ratio of microshutters. The goal of a microshutter is to allow as much light through as possible when the shutters are in the open configuration, and preventing any light from passing through when they are in the closed position. The ratio of the transmitted light that is blocked is defined here as the contrast ratio. Three major components contribute to the improved performance of these microshutters: 1. The precise implementation of light shields, which protect the gap around the shutters so no light can leak through. It has been ascertained that without the light shield there would be a gap on the order of 1 percent of the shutter area, limiting the contrast to a maximum of 100. 2. The precise coating of the interior wall of each microshutter was improved with an insulator and metal using an angle deposition technique. The coating prevents any infrared light that finds an entrance on the surface of the microshutter cell from being emitted from a sidewall. Since silicon is in effect transparent to any light with a wavelength longer than .1 micrometer, these coatings are essential to blocking any stray signals when the shutters are closed. 3. A thin film of molybdenum nitride (MoN) was integrated onto the surface of the microshutter blade. This film provides the majority of light blockage over the microshutter and also ensures that the shutter can be operated over a wide temperature range by maintaining its flatness. These improvements were motivated by the requirements dictated by the James Webb Space Telescope NIRSpec instrument. The science goals of the NIRSpec require observing some of the very faintest objects in a given field of view that also may contain some very bright objects. To observe the faint objects, the light from the bright objects - which could be thousands of times brighter - must be completely blocked. If a closed microshutter is even slightly transmissive, a very bright object will still transmit a small signal, which can be larger than a signal from a very faint object transmitted through an open shutter. Since this situation can completely corrupt the results, it was necessary that the closed shutters be able to attenuate light by at least a factor of 2,000. There currently exist four flight-quality microshutter arrays that have been fully or are currently undergoing testing and the results support that the three improvements described above have successfully led to contrast levels greater than 50,000 in over 99 percent of the microshutters at an operating temperature of 35 K. Applications for these high-contrast microshutters are in the photomask generation and stepper equipment used to make integrated circuits and microelectromechanical (MEMS) devices. Since microshutters are a reconfigurable optical element, their versatility in these industries provides an improvement over printed masks and fixed projection alignment systems

    Protein Kinase G-I Deficiency Induces Pulmonary Hypertension through Rho A/Rho Kinase Activation

    Get PDF
    Protein kinase G (PKG) plays an important role in the regulation of vascular smooth cell contractility and is a critical mediator of nitric oxide signaling, which regulates cardiovascular homeostasis. PKG-I–knockout (Prkg1−/−) mice exhibit impaired nitric oxide/cGMP-dependent vasorelaxation and systemic hypertension. However, it remains unknown whether PKG-I deficiency induces pulmonary hypertension. In this study, we characterized the hypertensive pulmonary phenotypes in Prkg1−/− mice and delineated the underlying molecular basis. We observed a significant increase in right ventricular systolic pressure in Prkg1−/− mice in the absence of systemic hypertension and left-sided heart dysfunction. In addition, we observed marked muscularization of distal pulmonary vessels in Prkg1−/− mice. Microangiography revealed impaired integrity of the pulmonary vasculature in Prkg1−/− mice. Mechanistically, PKG-I–mediated phosphorylation of Rho A Ser188 was markedly decreased, and the resultant Rho A activation was significantly increased in Prkg1−/− lung tissues, which resulted in Rho kinase activation. The i.t. administration of fasudil, a Rho kinase inhibitor, reversed the hypertensive pulmonary phenotype in Prkg1−/− mice. Taken together, these data show that PKG-I deficiency induces pulmonary hypertension through Rho A/Rho kinase activation–mediated vasoconstriction and pulmonary vascular remodeling

    The lack of star formation gradients in galaxy groups up to z~1.6

    Get PDF
    In the local Universe, galaxy properties show a strong dependence on environment. In cluster cores, early type galaxies dominate, whereas star-forming galaxies are more and more common in the outskirts. At higher redshifts and in somewhat less dense environments (e.g. galaxy groups), the situation is less clear. One open issue is that of whether and how the star formation rate (SFR) of galaxies in groups depends on the distance from the centre of mass. To shed light on this topic, we have built a sample of X-ray selected galaxy groups at 0<z<1.6 in various blank fields (ECDFS, COSMOS, GOODS). We use a sample of spectroscopically confirmed group members with stellar mass M >10^10.3 M_sun in order to have a high spectroscopic completeness. As we use only spectroscopic redshifts, our results are not affected by uncertainties due to projection effects. We use several SFR indicators to link the star formation (SF) activity to the galaxy environment. Taking advantage of the extremely deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations, we have an accurate, broad-band measure of the SFR for the bulk of the star-forming galaxies. We use multi-wavelength SED fitting techniques to estimate the stellar masses of all objects and the SFR of the MIPS and PACS undetected galaxies. We analyse the dependence of the SF activity, stellar mass and specific SFR on the group-centric distance, up to z~1.6, for the first time. We do not find any correlation between the mean SFR and group-centric distance at any redshift. We do not observe any strong mass segregation either, in agreement with predictions from simulations. Our results suggest that either groups have a much smaller spread in accretion times with respect to the clusters and that the relaxation time is longer than the group crossing time.Comment: Accepted for publication in MNRA

    An Early and Comprehensive Millimetre and Centimetre Wave and X-ray Study of SN 2011dh: a Non-Equipartition Blast Wave Expanding into a Massive Stellar Wind

    Get PDF
    Only a handful of supernovae (SNe) have been studied in multiwavelengths from the radio to X-rays, starting a few days after the explosion. The early detection and classification of the nearby Type IIb SN 2011dh/PTF 11eon in M51 provides a unique opportunity to conduct such observations. We present detailed data obtained at one of the youngest phase ever of a core-collapse SN (days 3–12 after the explosion) in the radio, millimetre and X-rays; when combined with optical data, this allows us to explore the early evolution of the SN blast wave and its surroundings. Our analysis shows that the expanding SN shock wave does not exhibit equipartition (ϵe/ϵB ∼ 1000), and is expanding into circumstellar material that is consistent with a density profile falling like R−2. Within modelling uncertainties we find an average velocity of the fast parts of the ejecta of 15 000 ± 1800 km s−1, contrary to previous analysis. This velocity places SN 2011dh in an intermediate blast wave regime between the previously defined compact and extended SN Type IIb subtypes. Our results highlight the importance of early (∼1 d) high-frequency observations of future events. Moreover, we show the importance of combined radio/X-ray observations for determining the microphysics ratio ϵe/ϵB

    An Early & Comprehensive Millimeter and Centimeter Wave and X-ray Study of Supernova 2011dh: A Non-Equipartition Blastwave Expanding into A Massive Stellar Wind

    Get PDF
    Only a handful of supernovae (SNe) have been studied in multi-wavelength from radio to X-rays, starting a few days after explosion. The early detection and classification of the nearby type IIb SN2011dh/PTF11eon in M51 provides a unique opportunity to conduct such observations. We present detailed data obtained at the youngest phase ever of a core-collapse supernova (days 3 to 12 after explosion) in the radio, millimeter and X-rays; when combined with optical data, this allows us to explore the early evolution of the SN blast wave and its surroundings. Our analysis shows that the expanding supernova shockwave does not exhibit equipartition (e_e/e_B ~ 1000), and is expanding into circumstellar material that is consistent with a density profile falling like R^-2. Within modeling uncertainties we find an average velocity of the fast parts of the ejecta of 15,000 +/- 1800 km/s, contrary to previous analysis. This velocity places SN 2011dh in an intermediate blast-wave regime between the previously defined compact and extended SN IIb subtypes. Our results highlight the importance of early (~ 1 day) high-frequency observations of future events. Moreover, we show the importance of combined radio/X-ray observations for determining the microphysics ratio e_e/e_B.Comment: 9 pages, 5 figures, submitted to Ap

    MEMS Microshutter Array System for James Webb Space Telescope

    Get PDF
    A complex MEMS microshutter array system has been developed at NASA Goddard Space Flight Center (GSFC) for use as a multi-object aperture array for a Near-Infrared Spectrometer (NIRSpec). The NIRSpec is one of the four major instruments carried by the James Webb Space Telescope (JWST), the next generation of space telescope after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. It is demonstrated in Figure 1 how a MSA is used as a multiple object selector in deep space. The MSAs empower the NIRSpec instrument simultaneously collect spectra from more than 100 targets therefore increases the instrument efficiency 100 times or more. The MSA assembly is one of three major innovations on JWST and the first major MEMS devices serving observation missions in space. The MSA system developed at NASA GSFC is assembled with four quadrant fully addressable 365x171 shutter arrays that are actuated magnetically, latched and addressed electrostatically. As shown in Figure 2, each MSA is fabricated out of a 4' silicon-on-insulator (SOI) wafer using MEMS bulk-micromachining technology. Individual shutters are close-packed silicon nitride membranes with a pixel size close to 100x200 pm (Figure 3). Shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. In order to prevent light leak, light shields are made on to the surrounding frame of each shutter to cover the gaps between the shutters and the Game (Figure 4). Micro-ribs and sub-micron bumps are tailored on hack walls and light shields, respectively, to prevent sticktion, shown in Figures 4 and 5. JWST instruments are required to operate at cryogenic temperatures as low as 35K, though they are to be subjected to various levels of ground tests at room temperature. The shutters should therefore maintain nearly flat in the entire temperature range between 35K and 300K. Through intensive numerical simulations and experimental studies, an optically opaque and electrically conductive metal-nitride thin film was selected as a coating material deposited on the shutters with the best thermal-expansion match to silicon nitride - the shutter blade thin film material. A shutter image shown in Figure 6 was taken at room temperature, presenting shutters slightly bowing down as expected. Shutters become flat when the temperature decreases to 35K. The MSAs are then bonded to silicon substrates that are fabricated out of 6" single-silicon wafers in the thickness of 2mm. The bonding is conducted using a novel single-sided indium flip-chip bonding technology. Indium bumps fabricated on a substrate are shown in Figure 7. There are 180,000 indium bumps for bonding a flight format MSA array to its substrate. Besides a MSA, each substrate houses five customer-designed ASIC (Application Specific Integrated Circuit) multiplexer/address chips for 2-dimensional addressing, twenty capacitors, two temperature sensors, numbers of resistors and all necessary interconnects, as shown in Figure 8. Complete MSA quadrant assemblies have been successfully manufactured and fully functionally tested. The assemblies have passed a series of critical reviews required by JWST in satisfying all the design specifications. The qualification tests cover programmable 2-D addressing, life tests, optical contrast tests, and environmental tests including radiation, vibration, and acoustic tests. A 2-D addressing pattern with 'ESA' letters programmed in a MSA is shown in Figure 9. The MSAs passed 1 million cycle life tests and achieved high optical contrast over 10,000. MSA teams are now making progress in final fabrication, testing and assembly (Figure 10). The delivery of flight-format MSA system is scheduled at the end of 2008 for being integrated to the focal plane of the NIRSpec detectors

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Fabrication of MEMS Microshutter Arrays for Cryogenic Applications

    Get PDF
    Two-dimensional MEMS microshutter arrays are being developed for use as a high contrast field selector for the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST). We present details of microshutter array fabrication and give results of work done to optimize the flatness of microshutter elements through film stress control for both room temperature and cryogenic (35K) operation
    • …
    corecore