1,420 research outputs found

    Tourism Finance: Investing and Financing in Sustainable Tourism

    Get PDF
    This study addresses the big problem that tourism projects and initiatives are encountering. Lack of financing is a common challenge hindering the development of tourism, resulting to a number of popular destinations that are slowly dying (e.g. the Great Wall of China, and the Angkor Wat). The purpose of Tourism Finance is to set criteria on which value-adding tourism projects should receive investment funding; and to evaluate a tourism organization’s financial needs to better decide on what capital structure (i.e., debt and/or equity) to appropriately raise to minimize the weighted average cost of capital. The method of this research is using qualitative research method with techniques of data collection by literature study and that were conducted by discussing seven potential sources of travel and tourism financing. Output, the result of this research is recommendations for leader in travel and tourism in improving the performance of tourism finance, investments to maintain the financial sustainability of organizations (i.e., business, non-profit and government) involved in the travel and tourism sectors

    Speculative parallelization of partially parallel loops

    Get PDF
    Current parallelizing compilers cannot identify a significant fraction of parallelizable loops because they have complex or statically insufficiently defined access patterns. In our previous work, we have speculatively executed a loop as a doall, and applied a fully parallel data dependence test to determine if it had any cross–processor depen- dences. If the test failed, then the loop was re–executed serially. While this method exploits doall parallelism well, it can cause slowdowns for loops with even one cross- processor flow dependence because we have to re-execute sequentially. Moreover, the existing, partial parallelism of loops is not exploited. We demonstrate a generalization of the speculative doall parallelization tech- nique, called the Recursive LRPD test, that can extract and exploit the maximum available parallelism of any loop and that limits potential slowdowns to the over- head of the run-time dependence test itself. In this thesis, we have presented the base algorithm and an analysis of the different heuristics for its practical applica- tion. To reduce the run-time overhead of the Recursive LRPD test, we have im- plemented on-demand checkpointing and commit, more efficient data dependence analysis and shadow structures, and feedback-guided load balancing. We obtained scalable speedups for loops from Track, Spice, and FMA3D that were not paralleliz- able by previous speculative parallelization methods

    Parallel session 4 :Teaching and learning innovations

    Full text link
    Presented Titles: Higher Education and COVID-19: Is Hybrid Teaching/Learning the Solution? [Author: Francis Arthur-Holmes] Technology-enabled Teaching and Learning in COVID-19: Implication for Professional Development in Hong Kong’s Post-secondary Colleges [Authors: Beatrice Yan-yan Dang; Hayes Hei-hang Tang; Joanna WY Yeung] Hybrid Learning: Online Learning in a Residential Environment [Authors: Ying Xiong; Jingduo Bi] Hybrid Education and Collaborative Learning: A Natural Experiment During COVID-19 [Authors: Luyao Zhang; Ying Xiong; Jiaxin Wu] Catching Teachers Off Guard from Remote Learning: An Implication of Innovative Teaching Training in Hong Kong [Authors: Derek Wai-sun Chun; Siu-ho Yau; Wai-man Chan

    METTL13 methylation of eEF1A increases translational output to promote tumorigenesis

    Full text link
    Increased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis in vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity in vitro and protein production in cells. METTL13 and eEF1AK55me2 levels are upregulated in cancer and negatively correlate with pancreatic and lung cancer patient survival. METTL13 deletion and eEF1AK55me2 loss dramatically reduce Ras-driven neoplastic growth in mouse models and in patient-derived xenografts (PDXs) from primary pancreatic and lung tumors. Finally, METTL13 depletion renders PDX tumors hypersensitive to drugs that target growth-signaling pathways. Together, our work uncovers a mechanism by which lethal cancers become dependent on the METTL13-eEF1AK55me2 axis to meet their elevated protein synthesis requirement and suggests that METTL13 inhibition may constitute a targetable vulnerability of tumors driven by aberrant Ras signaling.We thank Pal Falnes, Jerry Pelletier, and Julien Sage for helpful discussion, Lauren Brown and William Devine for SDS-1-021, and members of the Gozani and Mazur laboratories for critical reading of the manuscript. This work was supported in part by grants from the NIH to S.M.C. (K99CA190803), M.P.K. (5K08CA218690-02), J.A.P. (R35GM118173), M.C.B. (1DP2HD084069-01), J.S. (1R35GM119721), I.T. (R01CA202021), P.K.M. (R00CA197816, P50CA070907, and P30CA016672), and O.G. (R01GM079641). J.E.E. received support from Stanford ChEM-H, and A.M. was supported by the MD Anderson Moonshot Program. I.T. is a Junior 2 Research Scholar of the Fonds de Recherche du Quebec - Sante (FRQ-S). P.K.M. is supported by the Neuroendocrine Tumor Research Foundation and American Association for Cancer Research and is the Andrew Sabin Family Foundation Scientist and CPRIT scholar (RR160078). S.H. is supported by a Deutsche Forschungsgemeinschaft Postdoctoral Fellowship. J.W.F. is supported by 5T32GM007276. (K99CA190803 - NIH; 5K08CA218690-02 - NIH; R35GM118173 - NIH; 1DP2HD084069-01 - NIH; 1R35GM119721 - NIH; R01CA202021 - NIH; R00CA197816 - NIH; P50CA070907 - NIH; P30CA016672 - NIH; R01GM079641 - NIH; Stanford ChEM-H; MD Anderson Moonshot Program; Neuroendocrine Tumor Research Foundation; American Association for Cancer Research; Deutsche Forschungsgemeinschaft Postdoctoral Fellowship; 5T32GM007276)Supporting documentationAccepted manuscrip

    Similar Performance of Trabectome and Ahmed Glaucoma Devices in a Propensity Score-matched Comparison

    Get PDF
    Purpose: To apply propensity score matching to Ahmed glaucoma drainage implants (AGI) to trabectome-mediated ab interno trabeculectomy (AIT). Recent data suggest that AIT can produce results similar to AGI traditionally reserved for more severe glaucoma. Methods: AGI and AIT patients with at least 1 year of follow-up were included. The primary outcome measures were intraocular pressure (IOP), glaucoma medications, and a Glaucoma Index (GI) score. GI reflected glaucoma severity based on visual field, the number of preoperative medications, and preoperative IOP. Score matching used a genetic algorithm consisting of age, sex, type of glaucoma, concurrent phacoemulsification, baseline number of medications, and baseline IOP. Patients without a close match were excluded. Results: Of 152 patients, 34 AIT patients were matched to 32 AGI patients. Baseline characteristics including ethnicity, IOP, the number of medications, glaucoma type, the degree of visual field loss and GI were not significantly different between AIT and AGI. AIT had a preoperative IOP of 23.6±8.1 mm Hg compared with 26.5+10.6 mm Hg for AGI. At 12 months, the mean IOP was 15.0±9 mm Hg for AIT versus 15.0±4 mm Hg for AGI (P=0.8), whereas the number of drops was 2.3±2.2 for AIT versus 3.6±1.3 for AGI (P=0.016). Only 6 AIT patients (17.6%) required further surgery within the first 12 months versus 9 (28%) for AGI. Success, defined as IOP<21 mm Hg, <20% reduction and no reoperation, was achieved in 76% of AIT versus 69% of AGI (P=0.48). Complications occurred in 13% of AGI and 0.8% of AIT. Conclusions: A propensity score-matched comparison of AIT and AGI showed an equivalent IOP reduction through 1 year. Surprisingly, the AGI group required more glaucoma medications than the AIT group at 6 and 12 months

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Antigenic characterization of highly pathogenic avian influenza A(H5N1) viruses with chicken and ferret antisera reveals clade-dependent variation in hemagglutination inhibition profiles.

    Get PDF
    Highly pathogenic avian influenza (HPAI) A(H5N1) viruses pose a significant economic burden to the poultry industry worldwide and have pandemic potential. Poultry vaccination against HPAI A(H5N1) viruses has been an important component of HPAI control measures and has been performed in Vietnam since 2005. To systematically assess antigenic matching of current vaccines to circulating field variants, we produced a panel of chicken and ferret antisera raised against historical and contemporary Vietnamese reference viruses representing clade variants that were detected between 2001 and 2014. The antisera were used for hemagglutination inhibition (HI) assays to generate data sets for analysis by antigenic cartography, allowing for a direct comparison of results from chicken or ferret antisera. HI antigenic maps, developed with antisera from both hosts, revealed varying patterns of antigenic relationships and clustering of viruses that were dependent on the clade of viruses analyzed. Antigenic relationships between existing poultry vaccines and circulating field viruses were also aligned with in vivo protection profiles determined by previously reported vaccine challenge studies. Our results establish the feasibility and utility of HPAI A(H5N1) antigenic characterization using chicken antisera and support further experimental and modeling studies to investigate quantitative relationships between genetic variation, antigenic drift and correlates of poultry vaccine protection in vivo

    Distribution of Archaeal Communities along the Coast of the Gulf of Finland and Their Response to Oil Contamination

    Get PDF
    The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the archaeal core species network plausibly revealed resilience and the potential for oil degradation. Halobacteriaceae and putative cytochrome P450 pathways were significantly enriched in the oil-contaminated littoral sediment.The archaeal taxa formed highly interconnected and interactive networks, in which Halobacteriaceae, Thermococcus, and methanogens were the main components, implying a potential relevant trophic connection between hydrocarbon degradation, methanogenesis, sulfate reduction, and/or fermentative growth.Peer reviewe

    Altered regional cerebral blood flow in idiopathic hypersomnia

    Get PDF
    Objectives Idiopathic hypersomnia is characterized by excessive daytime sleepiness despite normal or long sleep time. Its pathophysiological mechanisms remain unclear. This pilot study aims at characterizing the neural correlates of idiopathic hypersomnia using single photon emission computed tomography. Methods Thirteen participants with idiopathic hypersomnia and sixteen healthy controls were scanned during resting wakefulness using a high-resolution single photon emission computed tomography scanner with 99mTc-ethyl cysteinate dimer to assess cerebral blood flow. The main analysis compared regional cerebral blood flow distribution between the two groups. Exploratory correlations between regional cerebral blood flow and clinical characteristics evaluated the functional correlates of those brain perfusion patterns. Significance was set at p <0.05 after correction for multiple comparisons. Results Idiopathic hypersomnia participants showed regional cerebral blood flow decreases in medial prefrontal cortex, posterior cingulate cortex and putamen, as well as increases in amygdala and temporo-occipital cortices. Lower regional cerebral blood flow in the medial prefrontal cortex was associated with higher daytime sleepiness. Conclusions These preliminary findings suggest that idiopathic hypersomnia is characterized by functional alterations in brain areas involved in the modulation of vigilance states, which may contribute to the daytime symptoms of this condition. The distribution of regional cerebral blood flow changes was reminiscent of the patterns associated with normal non-rapid-eye-movement sleep, suggesting the possible presence of incomplete sleep-wake transitions. These abnormalities were strikingly distinct from those induced by acute sleep deprivation, suggesting that the patterns seen here might reflect a trait associated with idiopathic hypersomnia rather than a non-specific state of sleepiness

    Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea

    Get PDF
    In the present study the diversity and abundance of nitrifying microbes including ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) were investigated, along with the physicochemical parameters potentially affecting them, in a transect of surface sediments from the coastal margin adjacent to the Pearl River estuary to the slope in the deep South China Sea. Nitrifying microbial diversity was determined by detecting the amoA (ammonia monooxygenase subunit A) gene. An obvious community structure shift for both AOA and beta-AOB from the coastal marginal areas to the slope in the deep-sea was detected, while the OTU numbers of AOA amoA were more stable than those of the beta-AOB. The OTUs of beta-AOB increased with the distance from the coastal margin areas to the slope in the deep-sea. Beta-AOB showed lower diversity with dominant strains in a polluted area but higher diversity without dominant strains in a clean area. Moreover, the diversity of beta-AOB was correlated with pH values, while no noticeable relationships were established between AOA and physicochemical parameters. Beta-AOB was more sensitive to transect environmental variability and might be a potential indicator for environmental changes. Additionally, the surface sediments surveyed in the South China Sea harboured diverse and distinct AOA and beta-AOB phylotypes different from other environments, suggesting the endemicity of some nitrifying prokaryotes in the South China Sea
    corecore