190 research outputs found

    Incidence of surgical site infection following mastectomy with and without immediate reconstruction using private insurer claims data

    Get PDF
    OBJECTIVE: The National Healthcare Safety Network classifies breast operations as clean procedures with an expected 1–2% surgical site infection (SSI) incidence. We assessed differences in SSI incidence following mastectomy with and without immediate reconstruction in a large, geographically diverse population. DESIGN: Retrospective cohort study. PATIENTS: Commercially-insured women aged 18–64 years with ICD-9-CM procedure or CPT-4 codes for mastectomy from 1/1/2004–12/31/2011. METHODS: Incident SSIs within 180 days after surgery were identified by ICD-9-CM diagnosis codes. The incidence of SSI after mastectomy +/− immediate reconstruction was compared by the chi-square test. RESULTS: From 2004–2011, 18,696 mastectomy procedures among 18,085 women were identified, with immediate reconstruction in 10,836 (58%) procedures. The 180-day incidence of SSI following mastectomy with or without reconstruction was 8.1% (1,520/18,696). Forty-nine percent of SSIs were identified within 30 days post-mastectomy, 24.5% between 31–60 days, 10.5% between 61–90 days, and 15.7% between 91–180 days. The incidence of SSI was 5.0% (395/7,860) after mastectomy-only, 10.3% (848/8,217) after mastectomy plus implant, 10.7% (207/1,942) after mastectomy plus flap, and 10.3% (70/677) after mastectomy plus flap and implant (p<0.001). The SSI risk was higher after bilateral compared with unilateral mastectomy with (11.4% vs. 9.4%, p=0.001) and without (6.1% vs. 4.7%, p=0.021) immediate reconstruction. CONCLUSIONS: SSI incidence was two-fold higher after mastectomy with immediate reconstruction than after mastectomy alone. Only 49% of SSIs were coded within 30 days after operation. Our results suggest stratification by procedure type will facilitate comparison of SSI rates after breast operations between facilities

    Assessing an online patient decision aid about upper extremity reconstructive surgery for cervical spinal cord injury: Pilot testing knowledge, decisional conflict, and acceptability

    Get PDF
    UNLABELLED: HIGHLIGHTS: People with cervical spinal cord injury prioritize gaining upper extremity function after injury, but few individuals receive information about treatment options.A newly created patient decision aid (PtDA) provides information about recovery after spinal cord injury and the role of traditional tendon and newer nerve transfer surgery to improve upper extremity upper extremity function.The PtDA improved knowledge and decreased decisional conflict in this pilot study.Future work should focus on studying dissemination and implementation of the ptDA into clinical practice

    A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells

    Get PDF
    Hypoxia inducible factor-1 (HIF-1) is a heterodimeric transcription factor that acts as the master regulator of cellular response to reduced oxygen levels, thus playing a key role in the adaptation, survival and progression of tumors. Here we report cyclo-CLLFVY, identified from a library of 3.2 million cyclic hexapeptides using a genetically encoded high-throughput screening platform, as an inhibitor of the HIF-1α/HIF-1β protein-protein interaction in vitro and in cells. The identified compound inhibits HIF-1 dimerization and transcription activity by binding to the PAS-B domain of HIF-1α, reducing HIF-1-mediated hypoxia response signaling in a variety of cell lines, without affecting the function of the closely related HIF-2 isoform. The reported cyclic peptide demonstrates the utility of our high-throughput screening platform for the identification of protein-protein interaction inhibitors, and forms the starting point for the development of HIF-1 targeted cancer therapeutics

    New Phase Diagram for Black Holes and Strings on Cylinders

    Full text link
    We introduce a novel type of phase diagram for black holes and black strings on cylinders. The phase diagram involves a new asymptotic quantity called the relative binding energy. We plot the uniform string and the non-uniform string solutions in this new phase diagram using data of Wiseman. Intersection rules for branches of solutions in the phase diagram are deduced from a new Smarr formula that we derive.Comment: 19 pages, 6 figures, v2: typos corrected, v3: refs. added, comment on bounds on the relative binding energy n added in end of section

    Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses

    Get PDF
    Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    The population genomic legacy of the second plague pandemic

    Get PDF
    Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.publishedVersio
    corecore