132 research outputs found

    Delivering genomic medicine in the United Kingdom National Health Service:a systematic review and narrative synthesis

    Get PDF
    PURPOSE: We sought to assess the readiness of the United Kingdom (UK) National Health Service to implement a Genomic Medicine Service. We conducted a systematic literature review to identify what is known about factors related to the implementation of genomic medicine in routine health care and to draw out the implications for the UK and other settings. METHODS: Relevant studies were identified in Web of Science and PubMed from their date of inception to April 2018. The review included primary research studies using quantitative, qualitative, or mixed methods, and systematic reviews. A narrative synthesis was conducted. RESULTS: Fifty-five studies met our inclusion criteria. The majority of studies reviewed were conducted in the United States. We identified four domains: (1) systems, (2) training and workforce needs, (3) professional attitudes and values, and (4) the role of patients and the public. CONCLUSION: Mainstreaming genomic medicine into routine clinical practice requires actions at each level of the health-care system. Our synthesis emphasized the organizational, social, and cultural implications of reforming practice, highlighting that demonstration of clinical utility and cost-effectiveness, attending to the compatibility of genomic medicine with clinical principles, and involving and engaging patients are key to successful implementation

    A novel deletion in proximal 22q associated with cardiac septal defects and microcephaly: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proximal 22q is rich in low copy repeats (LCRs) which mediate non-allelic homologous recombination and give rise to deletions and duplications of varying size depending on which LCRs are involved.</p> <p>Methods</p> <p>A child with multiple septal defects and other congenital anomalies was investigated for genome imbalance using multiplex ligation-dependent probe amplification (MLPA) for subtelomeres and microdeletion loci, followed by array comparative genomic hybridization (CGH) using oligonucleotide arrays with 44,000 probes across the genome.</p> <p>Results</p> <p>MLPA identified a single probe deletion in the SNAP29 gene within band 22q11.21. Follow-up array CGH testing revealed a ~1.4-Mb deletion from 19,405,375 bp to 20,797,502 bp, encompassing 28 genes.</p> <p>Conclusion</p> <p>This deletion is likely to be causally associated with the proband's congenital anomalies. Previous publications describing deletions in proximal 22q have reported deletions between LCRs 1 to 4, associated with 22q11 deletion syndrome; in addition, deletions between LCRs 4 and 6 have been described associated with "distal 22q11 deletion syndrome". To our knowledge, this is the first deletion which spans LCR4 and is not apparently mediated by LCRs. Comparison of the phenotypes found in conjunction with previously reported deletions, together with the function and expression patterns of genes in the deleted region reported here, suggests that haploinsufficiency for the Crk-like (CRKL) gene may be responsible for the reported cardiac abnormalities.</p

    The internet is parents' main source of information about psychiatric manifestations of 22q11.2 deletion syndrome (22q11.2DS)

    Get PDF
    With advances in laboratory technology, an increasing number of potentially pathogenic CNVs is recognised. The phenotypic effects of some CNVs are well characterised, however, it remains unclear how much information reaches the parents of affected children and by what route. The 22q11.2 deletion syndrome (del22q11.2) is caused by the deletion of approximately 40 genes from the long arm of chromosome 22 and was first described in 1955 [1]. Our study reports the extent to which parents of an affected child are aware of the various manifestation of the condition and describes how they first learned about these potential problems

    Structural analysis of pathogenic mutations in the DYRK1A gene in patients with developmental disorders.

    Get PDF
    Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism. Furthermore, there is some correlation between the magnitude of the change and the severity of the resultant phenotype. A comparison of the distribution of the pathogenic mutations along the length of DYRK1A with that of natural variants, as found in the ExAC database, confirms that mutations in the N-terminal end of the kinase domain are more disruptive of protein function. In particular, pathogenic mutations occur in significantly closer proximity to the ATP and the substrate peptide than the natural variants. Overall, we suggest that de novo dominant mutations in DYRK1A account for nearly 0.5% of severe developmental disorders due to substantially reduced kinase function

    Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.

    Get PDF
    Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015

    The importance of clinician, patient and researcher collaborations in Alport syndrome

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Pediatric Nephrology. The final authenticated version is available online at: https://doi.org/10.1007/s00467-019-04241-7Alport syndrome (AS) is caused by mutations in the genes COL4A3, COL4A4 or COL4A5 and is characterised by progressive glomerular disease, sensorineural hearing loss and ocular defects. Occurring in less than 1:5000, AS is rare genetic disorder but still accounts for >1% of the prevalent population receiving renal replacement therapy. There is also increasing awareness about the risk of chronic kidney disease in individuals with heterozygous mutations in AS genes. The mainstay of current therapy is the use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers, yet potential new therapies are now entering clinical trials. The 2017 International Workshop on Alport Syndrome in Glasgow was a preconference workshop ahead of the 50th anniversary meeting of the European Society for Pediatric Nephrology. It focussed on updates in clinical practice, genetics, basic science and also incorporated patient perspectives. More than 80 international experts including clinicians, geneticists, researchers from academia and industry, and patient representatives took part in panel discussions and breakout groups. This report summarises the workshop proceedings and the relevant contemporary literature. It highlights the unique clinician, patient and researcher collaborations achieved by regular engagement between the groups

    The 2019 and 2021 International Workshops on Alport Syndrome

    Get PDF
    In 1927 Arthur Cecil Alport, a South African physician, described a British family with an inherited form of kidney disease that affected males more severely than females and was sometimes associated with hearing loss. In 1961, the eponymous name Alport syndrome was adopted. In the late twentieth century three genes responsible for the disease were discovered: COL4A3, COL4A4, and COL4A5 encoding for the α3, α4, α5 polypeptide chains of type IV collagen, respectively. These chains assemble to form heterotrimers of type IV collagen in the glomerular basement membrane. Scientists, clinicians, patient representatives and their families, and pharma companies attended the 2019 International Workshop on Alport Syndrome, held in Siena, Italy, from October 22 to 26, and the 2021 online Workshop from November 30 to December 4. The main topics included: disease re-naming, acknowledging the need to identify an appropriate term able to reflect considerable clinical variability; a strategy for increasing the molecular diagnostic rate; genotype-phenotype correlation from monogenic to digenic forms; new therapeutics and new therapeutic approaches; and gene therapy using gene editing. The exceptional collaborative climate that was established in the magical medieval setting of Siena continued in the online workshop of 2021. Conditions were established for collaborations between leading experts in the sector, including patients and drug companies, with the aim of identifying a cure for Alport syndrome

    Advances and unmet needs in genetic, basic and clinical science in Alport syndrome::report from the 2015 International Workshop on Alport Syndrome

    Get PDF
    Alport syndrome (AS) is a genetic disease characterized by haematuric glomerulopathy variably associated with hearing loss and anterior lenticonus. It is caused by mutations in the COL4A3, COL4A4 or COL4A5 genes encoding the α3α4α5(IV) collagen heterotrimer. AS is rare, but it accounts for >1% of patients receiving renal replacement therapy. Angiotensin-converting enzyme inhibition slows, but does not stop, the progression to renal failure; therefore, there is an urgent requirement to expand and intensify research towards discovering new therapeutic targets and new therapies. The 2015 International Workshop on Alport Syndrome targeted unmet needs in basic science, genetics and diagnosis, clinical research and current clinical care. In three intensive days, more than 100 international experts including physicians, geneticists, researchers from academia and industry, and patient representatives from all over the world participated in panel discussions and breakout groups. This report summarizes the most important priority areas including (i) understanding the crucial role of podocyte protection and regeneration, (ii) targeting mutations by new molecular techniques for new animal models and potential gene therapy, (iii) creating optimal interaction between nephrologists and geneticists for early diagnosis, (iv) establishing standards for mutation screening and databases, (v) improving widespread accessibility to current standards of clinical care, (vi) improving collaboration with the pharmaceutical/biotech industry to investigate new therapies, (vii) research in hearing loss as a huge unmet need in Alport patients and (viii) the need to evaluate the risk and benefit of novel (including 'repurposing') therapies on an international basis
    corecore