190 research outputs found

    Human impact during the Bronze Age on the vegetation at Lago Lucone (northern Italy)

    Get PDF
    Lake-sediment records were used to reconstruct human impact on the landscape around Lago Lucone (45°33′N, 10°29′E, 249ma.s.l.), a former lake in the western amphitheatre system of the Lago di Garda. Presence of prehistoric human populations is attested by pile-dwelling settlements from the Early-Middle Bronze Age, with one settlement at a distance of only 100m from the coring site. Pollen, plant-macrofossil and microscopic charcoal analyses were applied to a 250cm sediment core with four dates providing the time control. A mixed oak forest that was important during the Early-Middle Holocene was cleared and replaced by open vegetation during the Bronze Age (∼2000-1100 b.c.) when open lands were estimated to have covered more than 60% of the total relevant pollen-source area. During a phase of high human impact, independent climatic proxies suggest warm and dry climatic conditions. Later, ca. 1100 b.c., palaeobotanical evidence indicates a sharp decrease in human pressure in the Lago Lucone area. The comparison with other sedimentary palaeocultural records shows that the period 1300-1100 b.c. was characterised by general declines of agricultural activities both south and north of the Alps. These declines have been previously attributed to a change towards wetter and colder climatic conditions in and around the Alps. However, the decline in human impact around Lago Lucone cannot be exclusively attributed to climatic variation. Therefore other forcing factors independent of climatic changes, such as cultural crises or changes in spatial organisation of the habitats, cannot be ruled out under the present state of knowledg

    Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution

    Get PDF
    The Balkans are considered the birthplace of mineral resource exploitation and metalworking in Europe. However, since knowledge of the timing and extent of metallurgy in southeastern Europe is largely constrained by discontinuous archaeological findings, the long-term environmental impact of past mineral resource exploitation is not fully understood. Here we present a high resolution and continuous geochemical record from a peat bog in western Serbia, providing for the first time a clear indication of extent and magnitude of environmental pollution in this region, and a context in which to place archaeological findings. We observe initial evidence of anthropogenic lead (Pb) pollution during the earliest part of the Bronze Age (c.3600 yr before Common Era (BCE)), the earliest such evidence documented in European environmental records. A steady, almost linear increase in Pb concentration after 600 BCE, until circa 1600 CE is observed, documenting the development in both sophistication and extent of southeastern European metallurgical activity throughout Antiquity and the Medieval Period. This provides a new view on the history of mineral exploitation in Europe, with metal-related pollution not ceasing at the fall of the western Roman Empire, as was the case in western Europe. Further comparison with other Pb pollution records indicates the the amount of Pb deposited in the Balkans during the Medieval Period was if not greater, at least similar to records located close to western European mining regions, suggestive of the key role the Balkans have played in mineral resource exploitation in Europe over the last 5600 years

    Rates of palaeoecological change can inform ecosystem restoration

    Get PDF
    Accelerations of ecosystem transformation raise concerns, to the extent that high rates of ecological change may be regarded amongst the most important ongoing imbalances in the Earth system. Here, we used high-resolution pollen and diatom assemblages and associated ecological indicators (the sum of tree and shrub pollen and diatom-inferred total phosphorus concentrations as proxies for tree cover and lake-water eutrophication, respectively) spanning the past 150 years to emphasise that rate-of-change records based on compositional data may document transformations having substantially different causes and outcomes. To characterize rates of change also in terms of other key ecosystem features, we quantified for both ecological indicators (i) the percentage of change per-unit-time, (ii) the percentage of change relative to a baseline level, and (iii) the rate of percentage change per-unit-time relative to a baseline level, taking into account the irregular spacing of palaeoecological data. These measures document how quickly specific facets of nature changed, their trajectory, as well as their status in terms of palaeoecological indicators. Ultimately, some past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions. In this context, insights from palaeoecological records may be useful to accelerate ecosystem restoration

    Human impacts and eutrophication patterns during the past ~200 years at Lago Grande di Avigliana (N. Italy)

    Get PDF
    A short sediment core from Lago Grande di Avigliana (Piedmont, Italy), the second most eutrophied lake in Italy, was analysed for pollen and diatoms to reconstruct land-use changes and to estimate baseline conditions for total phosphorus (TP) in the water column. Varve counts on sediment thin-sections and 210Pb, 226Ra, and 137Cs dating provided a reliable chronology for the past ~200 years. The main pollen-inferred land-use changes showed a sharp decrease of hemp retting around AD 1900, as well as a gradual change to less intensive agriculture and increasing abundance of exotic plants since AD ~1970. Diatom-inferred TP reconstructions indicated stable TP concentrations until AD ~1950, revealing baseline mesotrophic conditions (TP <25 µg l−1). After AD ~1950, TP values increased distinctly and continuously, culminating in the late 1960s with concentrations of 150 µg l−1. Subsequently, diatoms implied a linear decrease of TP, with an inferred value of 40 µg l−1 in the surface sediment sample. Comparison with instrumental TP measurements from the water column since AD 1980 showed a rapid recovery and allowed a direct validation of the diatom TP inference. However, although the TP concentration has decreased considerably, baseline conditions have not yet been reached. When compared to the limnological effects of sewage discharges on inferred-TP concentration, our results indicated that agricultural land use played a minor role in the lake's eutrophicatio

    A long-term multi-proxy record of varved sediments suggests climate-induced mixing-regime shift in a large hard-water lake ~5000 years ago

    Get PDF
    The long-term terrestrial and aquatic ecosystem dynamics spanning between approximately 6200 and 4800 cal BP were investigated using pollen, diatoms, pigments, charcoal, and geochemistry from varved sediments collected in a large stratified perialpine lake, Lago Grande di Avigliana, in the Italian Alps. Marked changes were detected in diatom and pigment assemblages and in sediment composition at ~4900 cal BP. Organic matter rapidly increased and diatom assemblages shifted from oligotrophic to oligo-mesotrophic planktonic assemblages suggesting that nutrients increased at that time. Because land cover, erosion, and fire frequency did not change significantly, external nutrient sources were possibly not essential in controlling the lake-ecosystem dynamics. This is also supported by redundancy analysis, which showed that variables explaining significant amounts of variance in the diatom data were not the ones related to changes in the catchment. Instead, the broad coincidence between the phytoplankton dynamics and rising lake-levels, cooler temperatures, and stronger spring winds in the northern Mediterranean borderlands possibly points to the effects of climate change on the nutrient recycling in the lake by means of the control that climate can exert on mixing depth. We hypothesize that the increased P-release rates and higher organic-matter accumulation rates, proceeded by enhanced precipitation of iron sulphides, were possibly caused by deeper and stronger mixing leading to enhanced input of nutrients from the anoxic hypolimnion into the epilimnion. Although we cannot completely rule out the influence of minor land-cover changes due to human activities, it may be hypothesized that climate-induced cumulative effects related to mixing regime and P-recycling from sediments influenced the aquatic-ecosystem dynamics

    Reconstructing Holocene landscape and environmental changes at Lago Rogaguado, Bolivian Amazon

    Get PDF
    Funder: University of CambridgeAbstractWe performed geochemical analyses of two lake sediment cores (1.25 and 1.5 m long) from Lago Rogaguado, which is a large (315 km2) and shallow lake in the Llanos de Moxos, Bolivian Amazon, to investigate Holocene environmental changes based on a multi-proxy dataset (XRF, density, grain size, C:N, and macrocharcoal). One of the two cores provides a history of environmental changes in the Llanos de Moxos from 8100 cal BP until present, which supplements previously published pollen and microscopic charcoal records. Our analyses indicate lake expansion at 5800 cal BP, which may relate to tectonic activity. This was followed by further increasing lake levels, peaking at approximately 1050–400 cal BP, which supports increasingly wetter conditions in the Llanos de Moxos after the mid-Holocene. A fourfold increase in macroscopic charcoal accumulation rate and a more than fivefold increase in sedimentation rates supports anthropogenic fire activity at around 1450 cal BP (500 CE), suggesting that pre-Columbian populations used fire to actively manage the landscape during a period of maximum lake levels around Lago Rogaguado. From 400–100 cal BP, higher C:N, larger grain sizes and peaks in macroscopic charcoal accumulation rates suggest increased watershed erosion associated with increased biomass burning, possibly related to intensified land use.</jats:p

    Carbon accumulation rates of Holocene peatlands in central–eastern Europe document the driving role of human impact over the past 4000 years

    Get PDF
    Peatlands are one of the largest terrestrial carbon sinks on the planet, yet little is known about carbon accumulation rates (CARs) of mountainous examples. The long-term variability in the size of the associated carbon sink and its drivers remain largely unconstrained, especially when long-term anthropogenic impact is also considered. Here we present a composite CAR record of nine peatlands from central-eastern Europe (Romania and Serbia) detailing variability in rates of carbon accumulation across the Holocene. We show examples of extremely high long-term rates of carbon accumulation (LORCA >120 g C m− 2 yr− 1), indicating that at times, mountain peatlands constitute an efficient regional carbon sink. By comparing our data to modelled palaeoclimatic indices and to measures of anthropogenic impact we disentangle the drivers of peat carbon accumulation in the area. Variability in early and mid-Holocene CARs is linked to hydroclimatic controls, with high CARs occurring during the early Holocene and lower CARs associated with the transition to cooler and moister mid-Holocene conditions. By contrast, after 4000 years (calibrated) before present (yr BP) the trends in CARs indicate a divergence from hydroclimate proxies, indicating that other processes became the dominant drivers of peat CARs. We suggest that enhanced erosion following tree cover reduction as well as enhanced rates of long-distance atmospheric dust fallout might have played a role as both processes would result in enhanced mineral and nutrient supply to bog surfaces, stimulating peat land productivity. Surprisingly though, for the last 1000 years, reconstructed temperature is significantly correlated with CARs, with rising temperatures linked to higher CARs. We suggest under future climate conditions, predicted to be warmer in the region, peat growth may expand, but that this is entirely dependent upon the scale of human impact directly affecting the sensitive hydrological budget of these peatlands

    A method for reconstructing temporal changes in vegetation functional trait composition using Holocene pollen assemblages

    Get PDF
    Methods of reconstructing changes in plant traits over long time scales are needed to understand the impact of changing environmental conditions on ecosystem processes and services. Although Holocene pollen have been extensively used to provide records of vegetation history, few studies have adopted a functional trait approach that is pertinent to changes in ecosystem processes. Here, for woody and herbaceous fen peatland communities, we use modern pollen and vegetation data combined with pollen records from Holocene deposits to reconstruct vegetation functional dynamics. The six traits chosen (measures of leaf area-to-mass ratio and leaf nutrient content) are known to modulate species’ fitness and to vary with changes in ecosystem processes. We fitted linear mixed effects models between community weighted mean (CWM) trait values of the modern pollen and vegetation to determine whether traits assigned to pollen types could be used to reconstruct traits found in the vegetation from pollen assemblages. We used relative pollen productivity (RPP) correction factors in an attempt to improve this relationship. For traits showing the best fit between modern pollen and vegetation, we applied the model to dated Holocene pollen sequences from Fenland and Romney Marsh in eastern and southern England and reconstructed temporal changes in trait composition. RPP adjustment did not improve the linear relationship between modern pollen and vegetation. Leaf nutrient traits (leaf C and N) were generally more predictable from pollen data than mass-area traits. We show that inferences about biomass accumulation and decomposition rates can be made using Holocene trait reconstructions. While it is possible to reconstruct community-level trends for some leaf traits from pollen assemblages preserved in sedimentary archives in wetlands, we show the importance of testing methods in modern systems first and encourage further development of this approach to address issues concerning the pollen-plant abundance relationship and pollen source area

    Holocene treeline and timberline changes in the South Carpathians (Romania): Climatic and anthropogenic drivers on the southern slopes of the Retezat Mountains

    Get PDF
    Two high-altitude lake-sediment sequences (Lake Lia, 1910 m a.s.l. and Lake Bucura, 2040 m a.s.l.) from the Retezat Mountains (South Carpathians, Romania) were analysed using multi-proxy methods to study responses of treeline, timberline and alpine/subalpine vegetation to climate change and human impact during the past 16,000 years. Woody species (Pinus mugo, Pinus cembra, Picea abies and Juniperus communis) reached Lake Lia between 12,000 and 11,800 cal. yr BP, whereas P. mugo colonised the shores of Lake Bucura at 9600 cal. yr BP. Lake Lia was in the timberline ecotone between 8000 and 3200 cal. yr BP, in semi-open P. cembra and Picea abies woodland, probably mixed with P. mugo on the steeper slopes. Lake Bucura was surrounded by the upper part of the krummholz zone during the mid-Holocene. The increase in P. cembra after c. 6000 cal. yr BP around Lake Lia suggests that the composition of the timberline forest changed. The disappearance of P. cembra and Picea abies around Lake Lia at ~3000 cal. yr BP reflects descent of the timberline. A large mean July temperature decline between 3300 and 2800 cal. yr BP may have driven or at least contributed to the descent of the Picea abies?P. cembra forests. An increase in human indicator pollen types in Lake Bucura around 4200 cal. yr BP may reflect human impact in the naturally open alpine zone in the Late Bronze Age. In contrast, human impact likely appeared considerably later, around 2650 cal. yr BP (Early Iron Age) around Lake Lia in the upper subalpine zone. Human impact likely intensified after 2200 cal. yr BP at both sites that resulted in the lowering of the krummholz zone. We conclude that climate change and human impact both played an important role in the lowering of the treeline and timberline in the late-Holocene

    Holocene fire-regime changes near the treeline in the Retezat Mts. (Southern Carpathians, Romania)

    Get PDF
    To investigate Holocene vegetation and fire-disturbance histories in the treeline ecotone, macroscopic charcoal, plant-macrofossil, and pollen records from two lacustrine sediment records were used. Lake Lia is on the southern slope and Lake Brazi is on the northern slope of the west-east-oriented Retezat Mountain range in the Romanian Carpathians. The records were used to reconstruct Holocene fire-return intervals (FRIs) and biomass burning changes. Biomass burning was highest at both study sites during the drier and warmer early Holocene, suggesting that climate largely controlled fire occurrence. Fuel load also influenced the fire regime as shown by the rapid biomass-burning changes in relation to timberline shifts. Overall, the number of inferred fire episodes was smaller on the northern than on the southern slope. FRIs were also comparatively longer (1000-4000 years) on the northern slope where Picea abies-dominated woodlands persisted around Lake Brazi throughout the Holocene. On the southern slope, where Pinus mugo was more abundant around Lake Lia, FRIs were significantly shorter (80-1650 years). A period of frequent fire episodes occurred around 1900-1300 cal yr BP on the southern slope, when chironomid-inferred summer temperatures increased and the pollen record documents increased anthropogenic activity near the treeline. However, the forest clearance by burning to increase grazing land was subdued in comparison to other European regions. © 2016 Elsevier Ltd and INQUA
    • …
    corecore