2,133 research outputs found
Glass transition in granular media
In the framework of schematic hard spheres lattice models for granular media
we investigate the phenomenon of the ``jamming transition''. In particular,
using Edwards' approach, by analytical calculations at a mean field level, we
derive the system phase diagram and show that ``jamming'' corresponds to a
phase transition from a ``fluid'' to a ``glassy'' phase, observed when
crystallization is avoided. Interestingly, the nature of such a ``glassy''
phase turns out to be the same found in mean field models for glass formers.Comment: 7 pages, 4 figure
Data sources for rescuing the rich heritage of Mediterranean historical surface climate data
10.1002/gdj3.4Availability of long-term and high-quality instrumental climate records is still insufficient and the rich heritage of meteorological surface observations is largely underexploited in many parts of the world. This is particularly striking over the Greater Mediterranean region (GMR), where meteorological observations have been taken since the 18th century at some locations. The lack of high quality and long series here is despite this region being regarded as a climate change hot spot. This article mainly assesses relevant sources containing Mediterranean historical climate data and metadata either from online repositories worldwide or physical archives, with the emphasis here on the rich holdings kept at French archives. A particular case study is the data rescue (DARE) program undertaken by the Algerian National Meteorological Service, as well as some of the past and ongoing projects and initiatives aimed at enhancing climate data availability and accessibility over the GMR. Our findings point to the high potential for undertaking DARE activities over the GMR and the need for bringing longer and higher quality climate time series to support a diverse number of scientific and technical assessments and policies
First Detection of the Crab Pulsar above 100 GeV
We present the detection of pulsed gamma-ray emission from the Crab pulsar
above 100 GeV with the VERITAS array of atmospheric Cherenkov telescopes.
Gamma-ray emission at theses energies was not expected in pulsar models. The
detection of pulsed emission above 100 GeV and the absence of an exponential
cutoff makes it unlikely that curvature radiation is the primary production
mechanism of gamma rays at these energies.Comment: 5 pages, proceedings of the TAUP 2011 conference in Munich, German
Stretched exponential relaxation for growing interfaces in quenched disordered media
We study the relaxation for growing interfaces in quenched disordered media.
We use a directed percolation depinning model introduced by Tang and Leschhorn
for 1+1-dimensions. We define the two-time autocorrelation function of the
interface height C(t',t) and its Fourier transform. These functions depend on
the difference of times t-t' for long enough times, this is the steady-state
regime. We find a two-step relaxation decay in this regime. The long time tail
can be fitted by a stretched exponential relaxation function. The relaxation
time is proportional to the characteristic distance of the clusters of pinning
cells in the direction parallel to the interface and it diverges as a power
law. The two-step relaxation is lost at a given wave length of the Fourier
transform, which is proportional to the characteristic distance of the clusters
of pinning cells in the direction perpendicular to the interface. The stretched
exponential relaxation is caused by the existence of clusters of pinning cells
and it is a direct consequence of the quenched noise.Comment: 4 pages and 5 figures. Submitted (5/2002) to Phys. Rev.
Gaussian tripartite entanglement in the simultaneous measurement of position and momentum
In this work, we prove the generation of genuine tripartite
continuous-variable entanglement in the unitary dynamics of the simultaneous
measurement process of position and momentum observables raised by Arthurs and
Kelly, considering a measurement configuration where the system under
examination is a rotated, displaced, and squeezed vacuum state. Under these
assumptions, the measurement configuration is entirely described by a Gaussian
state. Then, through the positive partial transpose criterion (PPT), we certify
genuine tripartite entanglement by testing the non-separability of the three
-mode bipartitions of the system. This process
allows us to classify the qualitative properties of the entanglement in the
category of fully inseparable Gaussian states according to the classification
exposed in [Giedke et al.,
\href{https://link.aps.org/doi/10.1103/PhysRevA.64.052303}{Phys. Rev. A
\textbf{64}, 052303 (2001)}]. Besides, we determine the quantitative
entanglement properties of the system using the residual tripartite R{\'e}nyi-2
entanglement as a quantifier measure.Comment: 15 pages, 8 figure
Insights into the room temperature magnetism of ZnO/Co3O4 mixtures
The origin of room temperature (RT) ferromagneticlike behavior in ZnO-based
diluted magnetic semiconductors is still an unclear topic. The present work
concentrates on the appearance of RT magnetic moments in just mixed ZnO/Co3O4
mixtures without thermal treatment. In this study, it is shown that the
magnetism seems to be related to surface reduction of the Co3O4 nanoparticles,
in which, an antiferromagnetic Co3O4 nanoparticle (core) is surrounded by a
CoO-like shell. This singular superficial magnetism has also been found in
other mixtures with semiconductors such as TiO2 and insulators such as Al2O3
Static and dynamic heterogeneities in irreversible gels and colloidal gelation
We compare the slow dynamics of irreversible gels, colloidal gels, glasses
and spin glasses by analyzing the behavior of the so called non-linear
dynamical susceptibility, a quantity usually introduced to quantitatively
characterize the dynamical heterogeneities. In glasses this quantity typically
grows with the time, reaches a maximum and then decreases at large time, due to
the transient nature of dynamical heterogeneities and to the absence of a
diverging static correlation length. We have recently shown that in
irreversible gels the dynamical susceptibility is instead an increasing
function of the time, as in the case of spin glasses, and tends asymptotically
to the mean cluster size. On the basis of molecular dynamics simulations, we
here show that in colloidal gelation where clusters are not permanent, at very
low temperature and volume fractions, i.e. when the lifetime of the bonds is
much larger than the structural relaxation time, the non-linear susceptibility
has a behavior similar to the one of the irreversible gel, followed, at higher
volume fractions, by a crossover towards the behavior of glass forming liquids.Comment: 9 pages, 3 figure
Jamming transition in granular media: A mean field approximation and numerical simulations
In order to study analytically the nature of the jamming transition in
granular material, we have considered a cavity method mean field theory, in the
framework of a statistical mechanics approach, based on Edwards' original idea.
For simplicity we have applied the theory to a lattice model and a transition
with exactly the same nature of the glass transition in mean field models for
usual glass formers is found. The model is also simulated in three dimensions
under tap dynamics and a jamming transition with glassy features is observed.
In particular two step decays appear in the relaxation functions and dynamic
heterogeneities resembling ones usually observed in glassy systems. These
results confirm early speculations about the connection between the jamming
transition in granular media and the glass transition in usual glass formers,
giving moreover a precise interpretation of its nature.Comment: 11 pages, 12 figure
A conjugate for the Bargmann representation
In the Bargmann representation of quantum mechanics, physical states are
mapped into entire functions of a complex variable z*, whereas the creation and
annihilation operators and play the role of
multiplication and differentiation with respect to z*, respectively. In this
paper we propose an alternative representation of quantum states, conjugate to
the Bargmann representation, where the roles of and
are reversed, much like the roles of the position and momentum operators in
their respective representations. We derive expressions for the inner product
that maintain the usual notion of distance between states in the Hilbert space.
Applications to simple systems and to the calculation of semiclassical
propagators are presented.Comment: 15 page
- …