812 research outputs found

    Modelling and analysis of time dependent processes in a chemically reactive mixture

    Get PDF
    In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in themodel in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen–Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.The paper is partially supported by the Research Centre of Mathematics of the University of Minho, with the Portuguese Funds from the Foundation for Science and Technology (FCT) through the Project UID/MAT/00013/2013. We wish to thank the anonymous Referees for their valuable comments and suggestions that helped us to improve the paper.info:eu-repo/semantics/publishedVersio

    Association of anxiety with intracortical inhibition and descending pain modulation in chronic myofascial pain syndrome

    Get PDF
    Background: This study aimed to answer three questions related to chronic myofascial pain syndrome (MPS): 1) Is the motor cortex excitability, as assessed by transcranial magnetic stimulation parameters (TMS), related to state-trait anxiety? 2) Does anxiety modulate corticospinal excitability changes after evoked pain by Quantitative Sensory Testing (QST)? 3) Does the state-trait anxiety predict the response to pain evoked by QST if simultaneously receiving a heterotopic stimulus [Conditional Pain Modulation (CPM)]? We included females with chronic MPS (n = 47) and healthy controls (n = 11), aged 19 to 65 years. Motor cortex excitability was assessed by TMS, and anxiety was assessed based on the State-Trait Anxiety Inventory. The disability related to pain (DRP) was assessed by the Profile of Chronic Pain scale for the Brazilian population (B:PCP:S), and the psychophysical pain measurements were measured by the QST and CPM. Results: In patients, trait-anxiety was positively correlated to intracortical facilitation (ICF) at baseline and after QST evoked pain (β = 0.05 and β = 0.04, respectively) and negatively correlated to the cortical silent period (CSP) (β = -1.17 and β = -1.23, respectively) (P <0.05 for all comparisons). After QST evoked pain, the DRP was positively correlated to ICF (β = 0.02) (P < 0.05). Pain scores during CPM were positively correlated with trait-anxiety when it was concurrently with high DRP (β = 0.39; P = 0.02). Controls’ cortical excitability remained unchanged after QST. Conclusions: These findings suggest that, in chronic MPS, the imbalance between excitatory and inhibitory descending systems of the corticospinal tract is associated with higher trait-anxiety concurrent with higher DRP

    Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    Get PDF
    The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A3 receptor agonist modulates IL-1β hippocampus levels in a rat model of neuropathic pain

    Get PDF
    Introduction: Considering the lack of specific treatments to neuropathic pain, this study aimed to evaluate the effect of a single dose adenosine A3 receptor IB-MECA in the inflammatory and neurotrophic parameters of rats submitted to a neuropathic pain model. Methods: 64 adults male Wistar rats were used.  Neuropathic pain was induced by the chronic constriction injury (CCI) of sciatic nerve and the treatment consisted in one dose of 0.5 μmol/kg of a selective agonist of adenosine A3 receptor IB-MECA dissolved in 3% DMSO; vehicle groups received DMSO 3% in saline; morphine groups received 5mg/kg Cerebral cortex and hippocampus IL-1β, BDNF and NGF levels were determined by ELISA assay. Results: The key finding was that a single dose of IB-MECA was able to modulate the IL-1β hippocampus levels CCI and the DMSO increased IL-1β and NGF hippocampus levels in sham animals; however, when the DMSO as an IB-MECA vehicle, this effect was not observed, indicating that IB-MECA was able to prevent the effect of DMSO. Conclusions: Considering that the IL-1β role in neuropathic pain is quite explored, as well as the hippocampus contributions, our result corroborates the relationship of A3 receptor and the chronic pain maintenance process. @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0in; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman";}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes;}div.WordSection1 {page:WordSection1;
    • …
    corecore