1,269 research outputs found

    Multilingual assessment of early child development: Analyses from repeated observations of children in Kenya.

    Get PDF
    In many low- and middle-income countries, young children learn a mother tongue or indigenous language at home before entering the formal education system where they will need to understand and speak a countrys official language(s). Thus, assessments of children before school age, conducted in a nations official language, may not fully reflect a childs development, underscoring the importance of test translation and adaptation. To examine differences in vocabulary development by language of assessment, we adapted and validated instruments to measure developmental outcomes, including expressive and receptive vocabulary. We assessed 505 2-to-6-year-old children in rural communities in Western Kenya with comparable vocabulary tests in three languages: Luo (the local language or mother tongue), Swahili, and English (official languages) at two time points, 5-6 weeks apart, between September 2015 and October 2016. Younger children responded to the expressive vocabulary measure exclusively in Luo (44%-59% of 2-to-4-year-olds) much more frequently than did older children (20%-21% of 5-to-6-year-olds). Baseline receptive vocabulary scores in Luo (ÎČ = 0.26, SE = 0.05, p < 0.001) and Swahili (ÎČ = 0.10, SE = 0.05, p = 0.032) were strongly associated with receptive vocabulary in English at follow-up, even after controlling for English vocabulary at baseline. Parental Luo literacy at baseline (ÎČ = 0.11, SE = 0.05, p = 0.045) was associated with child English vocabulary at follow-up, while parental English literacy at baseline was not. Our findings suggest that multilingual testing is essential to understanding the developmental environment and cognitive growth of multilingual children

    Intergenerational Transmission of Poverty and Inequality: Young Lives

    Get PDF
    Parents play major roles in determining the human capital of children, and thus the income of children when they become adults. Models of investments in children’s human capital posit that these investments are determined by parental resources (financial and human capital) and child endowments within particular market and policy environments. Many empirical studies are consistent with significant associations between parental resources and investments in their children. And there is considerable emphasis in the scholarly and the policy literatures on the degree of intergenerational mobility and the intergenerational transmission of economic opportunities, and therefore the intergenerational transmission of poverty – or of affluence. Therefore policies or other developments that affect the extent of poverty and/or inequality in the parents’ generation are likely to have impacts on the extent of poverty and/or inequality in the children’s generation. However the extent of these intergenerational effects is an empirical question that this paper explores using the Young Lives data to estimate intergenerational associations between parental resources and investments in human capital of children and then, under the assumption that these associations reflect causal effects, to simulate what impacts changes in poverty and inequality in the parents’ generation have on poverty and inequality in the children’s generation. The results suggest that reductions in poverty and in inequality in the parents’ generation reduce poverty and inequality in the children’s generation some, but not much

    Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex

    Get PDF
    We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July‐August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to −3.9 ÎŒmol CO2 m−2 s−1) \u3c poor fen (6.3 to −6.5 ÎŒmol CO2 m−2 s−1) \u3c intermediate fen (10.5 to −7.8 ÎŒmol CO2 m−2 s−1) \u3c rich fen (14.9 to −8.7 ÎŒmol CO2m−2 s−1). The sequence changed during spring (May‐June) and fall (September‐October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub‐dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze‐up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3
    • 

    corecore