3,774 research outputs found
Microstructure and chemical composition of Roman orichalcum coins emitted after the monetary reform of Augustus (23 B.C.)
A collection of ancient Roman orichalcum coins, i.e., a copper-zinc alloy, minted under the reigns from Caesar to Domitianus, have been characterised using scanning electron microscopy (SEM-EDS) and electron microprobe analysis (EMPA). We studied, for the first time, coins emitted by Romans after the reforms of Augustus (23 B.C.) and Nero (63-64 A.D). These coins, consisting of asses, sestertii, dupondii and semisses, were analysed using non- and invasive analyses, aiming to explore microstructure, corrosive process and to acquire quantitative chemical analysis. The results revealed that the coins are characterized by porous external layers, which are affected by dezincification and decuprification processes. As pictured by the X-ray maps, the elemental distribution of Cu and Zn shows patterns of depletion that in some cases penetrate in deep up to 1 mm. The composition of the un-corroded nucleus is a Cu-Zn alloy containing up to 30% of Zn, typical of coins produced via cementation process
Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies
Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded
handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, ”-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated
Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies
Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded
handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, ”-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated
The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil
Under application of an electric field greater than a triggering electric
field kV/mm, suspensions obtained by dispersing particles of the
synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or
column-like structures parallel to the applied electric field. This
micro-structuring results in a transition in the suspensions' rheological
behavior, from a Newtonian-like behavior to a shear-thinning rheology with a
significant yield stress. This behavior is studied as a function of particle
volume fraction and strength of the applied electric field, . The steady
shear flow curves are observed to scale onto a master curve with respect to
, in a manner similar to what was recently found for suspensions of laponite
clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield
stress is demonstrated to scale with respect to as a power law with an
exponent , while the static yield stress inferred from
constant shear stress tests exhibits a similar behavior with . The suspensions are also studied in the framework of thixotropic fluids:
the bifurcation in the rheology behavior when letting the system flow and
evolve under a constant applied shear stress is characterized, and a
bifurcation yield stress, estimated as the applied shear stress at which
viscosity bifurcation occurs, is measured to scale as with to 0.6. All measured yield stresses increase with the particle
fraction of the suspension. For the static yield stress, a scaling law
, with , is found. The results are found to be
reasonably consistent with each other. Their similarities with-, and
discrepancies to- results obtained on laponite-oil suspensions are discussed
Remote colorimetric measurements by hyperspectral lidar compared to contact conventional colorimetry
Lidars have many applications in different fields, including the field of Cultural Heritage. The purpose of this study is to evaluate a scanning hyperspectral lidar prototype developed at ENEA Center of Frascati as a useful tool for colorimetric analysis when samples cannot be studied with standard contact instruments. A certified X-Rite Color-checker sample, consisting of 24 colored blocks with a coordinated colorimetric certificate, was analyzed. In order to obtain colorimetric data from the reflectance spectra, the precepts of the Commission de l'Ăclairage were followed and an algorithm was developed to calculate the color difference between the certified values of the Color-checker and commercial and non-commercial spectrophotometers and those obtained by the lidar, confirming this latter as a useful tool for remote colorimetry
A glass spark counter for high rate environments
The performance of a glass spark counter prototype, built with glass electrodes of about 1010 Ω cm volume resistivity, is described. The measure
A Nexafs Study of Nitric Oxide Layers Adsorbed from a nitrite Solution onto a Pt(111) Surface
NO molecules adsorbed on a Pt(111) surface from dipping in an acidic nitrite
solution are studied by near edge X-ray absorption fine structure spectroscopy
(NEXAFS), X-ray photoelectron spectroscopy (XPS), low energy electron
diffraction (LEED) and scanning tunnelling microscopy (STM) techniques. LEED
patterns and STM images show that no long range ordered structures are formed
after NO adsorption on a Pt(111) surface. Although the total NO coverage is
very low, spectroscopic features in N K-edge and O K-edge absorption spectra
have been singled out and related to the different species induced by this
preparation method. From these measurements it is concluded that the NO
molecule is adsorbed trough the N atom in an upright conformation. The maximum
saturation coverage is about 0.3 monolayers, and although nitric oxide is the
major component, nitrite and nitrogen species are slightly co-adsorbed on the
surface. The results obtained from this study are compared with those
previously reported in the literature for NO adsorbed on Pt(111) under UHV
conditions
The OPERA magnetic spectrometer
The OPERA neutrino oscillation experiment foresees the construction of two
magnetized iron spectrometers located after the lead-nuclear emulsion targets.
The magnet is made up of two vertical walls of rectangular cross section
connected by return yokes. The particle trajectories are measured by high
precision drift tubes located before and after the arms of the magnet.
Moreover, the magnet steel is instrumented with Resistive Plate Chambers that
ease pattern recognition and allow a calorimetric measurement of the hadronic
showers. In this paper we review the construction of the spectrometers. In
particular, we describe the results obtained from the magnet and RPC prototypes
and the installation of the final apparatus at the Gran Sasso laboratories. We
discuss the mechanical and magnetic properties of the steel and the techniques
employed to calibrate the field in the bulk of the magnet. Moreover, results of
the tests and issues concerning the mass production of the Resistive Plate
Chambers are reported. Finally, the expected physics performance of the
detector is described; estimates rely on numerical simulations and the outcome
of the tests described above.Comment: 6 pages, 10 figures, presented at the 2003 IEEE-NSS conference,
Portland, OR, USA, October 20-24, 200
- âŠ