71 research outputs found

    Detection of Leakage Areas in an Earth Embankment from GPR Measurements and Permeability Logging

    Get PDF
    Ground penetrating radar (GPR) is a nondestructive method allowing the improvement of our knowledge of civil engineering structures. In particular, this method may be a nondestructive efficient tool for dike diagnosis and complete classical geotechnical methods. In this paper, we present GPR observations obtained on an earth embankment (crest and sloped paved revetment) in bad condition and located on the lateral canal of the Loire river (Saint Firmin, 80 km South East of Orléans). These measurements are combined with corings, visual inspection, and permeability logging performed with an updated drilling system, the Perméafor. This survey leads (i) to the detection of decompressed zones associated with leakage areas visible at the foot of the downstream slope and (ii) to the location of potentials voids underneath the paved revetment. This multidisciplinary approach complied with the dike inspection methodology proves its efficiency for the assessment of earth embankments

    Ménerval, Saumont-la-Poterie – Le Pont de Coq

    Get PDF
    Dans la perspective de mieux appréhender les franchissements historiques de l’Epte au lieu-dit « Le Pont de Coq » sur les communes de Saumont-la-Poterie et Ménerval, l’Association pour la Sauvegarde du Pont de Coq (ASPC) a réalisé une campagne de sondages archéologiques en juin et octobre 2012. Des études pluridisciplinaires ont été préalablement réalisées montrant l’ancienneté de ce franchissement qui constituait un des seuls passages nord/sud de l’Epte dans le Pays de Bray. La synthèse des ..

    The Huayruro Project: mapping the Calicanto Inca area buried by the A.D. 1600 Huaynaputina eruption, with geophysical imaging and remote sensing

    Get PDF
    We present geophysical and remote sensing observations near the Quinistaquillas town (southern Peru), in the framework of the HUAYRURO Project. This Inca zone was buried during the A.D. 1600 Huaynaputina eruption, the most important volcanic phenomenon of the last 400 years. The eruption had a global impact, due to the volume of emitted ash (2-3 times the one emitted by Vesuvius in A.D. 79). This lead to a 1.13°C cooling of the planet and caused a worlwide agricultural crisis. During the eruption, the Calicanto-Chimpapampa zone was covered by ashes and pyroclastic flows, with a thickness in the range [1 - 20] m. From 2015 to 2017, remote sensing and geophysical methods were deployed to map a ~ 1 km*2 km area, up to 3-m depth

    Physical impacts of the CE 1600 Huaynaputina eruption on the local habitat: Geophysical insights

    Get PDF
    [ESP] El impacto climático global de la erupción del volcán Huaynaputina (IEV6) en 1600 está bien documentado pero las consecuencias regionales sobre las construcciones y los habitantes están poco conocidas. La localización de varios pueblos sepultados bajo los depósitos espesos del Huaynaputina no es claramente mencionada en las crónicas españolas. Investigaciones geofísicas realizadas durante el periodo 2015-2016 sobre diferentes sitios de ruinas a menos de 16 km del cráter constituyen la parte inicial de un proyecto denominado “Huayruro”, cuyo objetivo es entender mejor los impactos físicos y socio-económicos de esta erupción. Varios métodos e instrumentos geofísicos fueron utilizados: un drone y modelos numéricos de terreno de alta resolución, un geo-radar con imágenes 3D del subsuelo, el magnetismo, las imágenes infra-rojas y el electro-magnetismo. Esta investigación geofísica preliminar ha permitido identificar la futura estratégia y la mejor instrumentación para cartografiar el área del antiguo pueblo enterrado de Calicanto, localizando con precisión su extensión y los muros de las habitaciones. Este mapeo servirá para los futuros estudios tefro-estratigráficos y arqueológicos. El objetivo final del proyecto es diseminar los resultados del estudio multidisciplinar al público incluyendo la creación de un museo de sitio

    UTILISATION DE RADARS TRES HAUTES FREQUENCES (APPLICATION A L'AUSCULTATION NON DESTRUCTIVE DES CHAUSSEES)

    No full text
    NANTES-BU Sciences (441092104) / SudocSudocFranceF

    Geophysical and Geotechnical Methods for Diagnosing Flood Protection Dikes

    Get PDF
    This book presents a three-phase methodology for the efficient diagnosis of “dry dikes†(i.e. dykes built above normal water levels of the rivers that provide protection at time of flood). Although the principles of the method described herein were developed on dikes in France, they may be applied with confidence to flood protection dikes and levees in other countries around the world. Phase one of the methodology involves gathering as much information as possible about the dike from archive analysis, interviews with managers and inspections of the structures. This phase is essential in ensuring the high quality of the final diagnosis. The main aim of the second phase – the geophysical survey – is to divide up the dike into zones in order to identify sections of the structure that are vulnerable to irreversible damage during a flood because of their particular physical characteristics. The geophysical methods used must be capable of surveying over long distances and of revealing heterogeneities both within the dike and in its foundation. The third phase – the geotechnical investigation – consists of various tests and drillings that ascertain in situ the principal mechanical characteristics and properties of the materials that make up the structure. This guide is invaluable for anyone involved in dike safet

    Geophysical and Geotechnical Methods for Diagnosing Flood Protection Dikes

    Get PDF
    This book presents a three-phase methodology for the efficient diagnosis of “dry dikes†(i.e. dykes built above normal water levels of the rivers that provide protection at time of flood). Although the principles of the method described herein were developed on dikes in France, they may be applied with confidence to flood protection dikes and levees in other countries around the world. Phase one of the methodology involves gathering as much information as possible about the dike from archive analysis, interviews with managers and inspections of the structures. This phase is essential in ensuring the high quality of the final diagnosis. The main aim of the second phase – the geophysical survey – is to divide up the dike into zones in order to identify sections of the structure that are vulnerable to irreversible damage during a flood because of their particular physical characteristics. The geophysical methods used must be capable of surveying over long distances and of revealing heterogeneities both within the dike and in its foundation. The third phase – the geotechnical investigation – consists of various tests and drillings that ascertain in situ the principal mechanical characteristics and properties of the materials that make up the structure. This guide is invaluable for anyone involved in dike safet
    corecore