33 research outputs found
Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry
We investigate supersymmetric scenarios in which neutrino masses are
generated by effective d=6 operators in the Kahler potential, rather than by
the standard d=5 superpotential operator. First, we discuss some general
features of such effective operators, also including SUSY-breaking insertions,
and compute the relevant renormalization group equations. Contributions to
neutrino masses arise at low energy both at the tree level and through finite
threshold corrections. In the second part we present simple explicit
realizations in which those Kahler operators arise by integrating out heavy
SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge,
depending on the mechanism and the scale of SUSY-breaking mediation. In
particular, we propose an appealing and economical picture in which the heavy
seesaw mediators are also messengers of SUSY breaking. In this case, strong
correlations exist among neutrino parameters, sparticle and Higgs masses, as
well as lepton flavour violating processes. Hence, this scenario can be tested
at high-energy colliders, such as the LHC, and at lower energy experiments that
measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw
We study the impact of a type-I SUSY seesaw concerning lepton flavour
violation (LFV) both at low-energies and at the LHC. The study of the di-lepton
invariant mass distribution at the LHC allows to reconstruct some of the masses
of the different sparticles involved in a decay chain. In particular, the
combination with other observables renders feasible the reconstruction of the
masses of the intermediate sleptons involved in decays. Slepton mass splittings can be either
interpreted as a signal of non-universality in the SUSY soft breaking-terms
(signalling a deviation from constrained scenarios as the cMSSM) or as being
due to the violation of lepton flavour. In the latter case, in addition to
these high-energy processes, one expects further low-energy manifestations of
LFV such as radiative and three-body lepton decays. Under the assumption of a
type-I seesaw as the source of neutrino masses and mixings, all these LFV
observables are related. Working in the framework of the cMSSM extended by
three right-handed neutrino superfields, we conduct a systematic analysis
addressing the simultaneous implications of the SUSY seesaw for both high- and
low-energy lepton flavour violation. We discuss how the confrontation of
slepton mass splittings as observed at the LHC and low-energy LFV observables
may provide important information about the underlying mechanism of LFV.Comment: 50 pages, 42 eps Figures, typos correcte
Supersymmetric mass spectra and the seesaw scale
Supersymmetric mass spectra within two variants of the seesaw mechanism,
commonly known as type-II and type-III seesaw, are calculated using full 2-loop
RGEs and minimal Supergravity boundary conditions. The type-II seesaw is
realized using one pair of 15 and superfields, while the type-III is
realized using three copies of superfields. Using published, estimated
errors on SUSY mass observables attainable at the LHC and in a combined LHC+ILC
analysis, we calculate expected errors for the parameters of the models, most
notably the seesaw scale. If SUSY particles are within the reach of the ILC,
pure mSugra can be distinguished from mSugra plus type-II or type-III seesaw
for nearly all relevant values of the seesaw scale. Even in the case when only
the much less accurate LHC measurements are used, we find that indications for
the seesaw can be found in favourable parts of the parameter space. Since our
conclusions crucially depend on the reliability of the theoretically forecasted
error bars, we discuss in some detail the accuracies which need to be achieved
for the most important LHC and ILC observables before an analysis, such as the
one presented here, can find any hints for type-II or type-III seesaw in SUSY
spectra.Comment: 31 pages, 49 figure
Drying colloidal systems: laboratory models for a wide range of applications
The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art