199 research outputs found
O naravi i zadaći teologije
The coastal zone is under considerable pressure from development and is subject to change. Consequently, shoreline monitoring has grown in importance. Remotely sensed imagery from satellite sensors has been used as an alternative to conventional methods, such as those based on the interpretation of aerial photography and ground-based surveying, for monitoring shoreline position. However, the accuracy of shoreline mapping from satellite sensor imagery has been limited because of the relatively coarse spatial resolution (>10 m) of the sensors commonly used. Because of major practical and financial constraints, very fine spatial resolution (<5 m) data are often impractical for mapping large stretches of shoreline, so refinement of image analysis methods are needed to extract the desired subpixel-scale information from relatively coarse spatial resolution imagery. In this paper, the potential to map the shoreline at a subpixel scale from a soft classification of relatively coarse spatial resolution satellite sensor imagery was evaluated. Unlike conventional approaches, the methods used allowed the shoreline to be mapped within image pixels and have the potential to yield an accurate and realistic prediction of shoreline location. The approach involved the use of a soft image classification to estimate the subpixel-scale thematic composition of image pixels, which were then located geographically through postclassification analysis. Specifically, a contouring and geostatistical method based on a two-point histogram was used to position geographically the shoreline within image pixels. The approach was applied to differently shaped shoreline extracts in imagery at two spatial resolutions. The most accurate prediction of the shoreline position from images with 16- and 32-m spatial resolutions were typically for a simple linear stretch of coast for which the smallest root mean square error values were 1.20 m. The shoreline predictions satisfied the map accuracy standards specified for large-scale maps
A novel Border Identification algorithm based on an “Anti-Bayesian” paradigm
Border Identification (BI) algorithms, a subset of Prototype Reduction Schemes (PRS) aim to reduce the number of training vectors so that the reduced set (the border set) contains only those patterns which lie near the border of the classes, and have sufficient information to perform a meaningful classification. However, one can see that the true border patterns (“near” border) are not able to perform the task independently as they are not able to always distinguish the testing samples. Thus, researchers have worked on this issue so as to find a way to strengthen the “border” set. A recent development in this field tries to add more border patterns, i.e., the “far” borders, to the border set, and this process continues until it reaches a stage at which the classification accuracy no longer increases. In this case, the cardinality of the border set is relatively high. In this paper, we aim to design a novel BI algorithm based on a new definition for the term “border”. We opt to select the patterns which lie at the border of the alternate class as the border patterns. Thus, those patterns which are neither on the true discriminant nor too close to the central position of the distributions, are added to the “border” set. The border patterns, which are very small in number (for example, five from both classes), selected in this manner, have the potential to perform a classification which is comparable to that obtained by well-known traditional classifiers like the SVM, and very close to the optimal Bayes’ bound
Valuing map validation: the need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services
Valuations of ecosystem services often use data on land cover class areal extent. Area estimates from land cover maps may be biased by misclassification error resulting in flawed assessments and inaccurate valuations. Adjustment for misclassification error is possible for maps subjected to a rigorous validation program including an accuracy assessment. Unfortunately, validation is rare and/or poorly undertaken as often not regarded as a high priority. The benefit of map validation and hence its value is indicated with two maps. The International Geosphere Biosphere Programme’s DISCover map was used to estimate wetland value globally. The latter changed from US2.79 trillion yr-1 when adjusted for misclassification bias. For the conterminous USA, ecosystem services value based on six land cover classes from the National Land Cover Database (2006) changed from US600 billion yr-1 after adjustment for misclassification bias. The effect of error-adjustment on the valuations indicates the value of map validation to rigorous evidence-based science and policy work in relation to aspects of natural capital. The benefit arising from validation was orders of magnitude larger than mapping costs and it is argued that validation should be a high priority in mapping programs and inform valuations
Object-Based Area-to-Point Regression Kriging for Pansharpening
Optical earth observation satellite sensors often provide a coarse spatial resolution (CR) multispectral (MS) image together with a fine spatial resolution (FR) panchromatic (PAN) image. Pansharpening is a technique applied to such satellite sensor images to generate an FR MS image by injecting spatial detail taken from the FR PAN image while simultaneously preserving the spectral information of MS image. Pansharpening methods are mostly applied on a per-pixel basis and use the PAN image to extract spatial detail. However, many land cover objects in FR satellite sensor images are not illustrated as independent pixels, but as many spatially aggregated pixels that contain important semantic information. In this article, an object-based pansharpening approach, termed object-based area-to-point regression kriging (OATPRK), is proposed. OATPRK aims to fuse the MS and PAN images at the object-based scale and, thus, takes advantage of both the unified spectral information within the CR MS images and the spatial detail of the FR PAN image. OATPRK is composed of three stages: image segmentation, object-based regression, and residual downscaling. Three data sets acquired from IKONOS and Worldview-2 and 11 benchmark pansharpening algorithms were used to provide a comprehensive assessment of the proposed OATPRK approach. In both the synthetic and real experiments, OATPRK produced the most superior pan-sharpened results in terms of visual and quantitative assessment. OATPRK is a new conceptual method that advances the pixel-level geostatistical pansharpening approach to the object level and provides more accurate pan-sharpened MS images. IEE
Utilizing image texture to detect land-cover change in Mediterranean coastal wetlands
Land-use/cover change dynamics were investigated in a Mediterranean coastal wetland. Change Vector Analysis (CVA) without and with image texture derived from the co-occurrence matrix and variogram were evaluated for detecting land-use/cover change. Three Landsat Thematic Mapper (TM) scenes recorded on July 1985, 1993 and 2005 were used, minimizing change detection error caused by seasonal differences. Images were geometrically, atmospherically and radiometrically corrected. CVA without and with texture measures were implemented and assessed using reference images generated by object-based supervised classification. These outputs were used for cross-classification to determine the ‘from–to’ change used to compare between techniques. The Landsat TM image bands together with the variogram yielded the most accurate change detection results, with Kappa statistics of 0.7619 and 0.7637 for the 1985–1993 and 1993–2005 image pairs, respectively
Linking remote sensing, land cover and disease
Land cover is a critical variable in epidemiology and can be characterized remotely. A framework is used to describe both the links between land cover and radiation recorded in a remotely sensed image, and the links between land cover and the disease carried by vectors. The framework is then used to explore the issues involved when moving from remotely sensed imagery to land cover and then to vector density/disease risk. This exploration highlights the role of land cover: the need to develop a sound knowledge of each link in the predictive sequence; the problematic mismatch between the spatial units of the remotely sensed and epidemiological data and the challenges and opportunities posed by adding a temporal mismatch between the remotely sensed and epidemiological data. The paper concludes with a call for both greater understanding of the physical components of the proposed framework and the utilization of optimized statistical tools as prerequisites to progress in this field
- …