738 research outputs found
Tensor virial equation of evolving surfaces in sintering of aggregates of particles by diffusion
The moment of inertia tensor is a quantity that characterizes the morphology of aggregates of particles. The deviatoric components indicate the anisotropy of the aggregate, and its compactness is described by the isotropic component, i.e. the second moment of inertia, which is related to the radius of gyration. The equation of motion of the moment of inertia tensor is proposed for the sintering and coalescence of crystalline particles by bulk diffusion and surface diffusion. Simulations of the evolution of aggregates of particles (linear chains, rings and branched chains) show that the aggregates become more compact and more isotropic structures, driven by the surface energy tensor or the surface force density. The tensor virial equation for diffusion is applicable also to evolution of pores, precipitates and inclusions embedded in a surrounding matrix
Effect of a liquid Phase on Superplasticity of 2-moI%-Y 2 0 3 -StabiIlzed Tetragonal Zirconla Polycrystals
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66013/1/j.1151-2916.1990.tb09806.x.pd
Fabrication of Mullite Body Using Superplastic Transient Phase
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65799/1/j.1151-2916.1992.tb05542.x.pd
Investigation of Thermal Diffusivity for Nano-Phase Composite Ceramics
In recent years, there has been increasing interest in nanostructured ceramic materials because of their advanced properties. The superplasticity; improved strength and toughness, higher densification rate and low sintering temperature are observed in these materials[1–4]. The sintering speed vsintering of ceramic is related to the grain size d by the expression of vsin ting ∝d-4 [2]. By adding the nano-particles of Al2O3 to conventional Al2O3, the strength, fracture toughness and thermal resistance of Al2O3 ceramic can increase[5]. Up to now, only a few researchers[6,7] have concerned about the specific heat and thermal expansion of nano- ceramics, and no report about thermal diffusivity of nano-composite has been found in literature. However, characterizations of thermal diffusivity of nanocomposite ceramics are very important for designing and preparing this kind of new materials.</p
The helicity amplitudes A and A for the D resonance obtained from the reaction}
The helicity dependence of the reaction
has been measured for the first time in the photon energy range from 550 to 790
MeV. The experiment, performed at the Mainz microtron MAMI, used a
4-detector system, a circularly polarized, tagged photon beam, and a
longitudinally polarized frozen-spin target. These data are predominantly
sensitive to the resonance and are used to determine its
parameters.Comment: 5 pages, 4 figure
An Interpretation of Article 24 of the Constitution of Japan: Reconsidering the Principle of \u27\u27Gender Equality\u27\u27 from the Perspective of \u27\u27the Dilemma of Difference\u27\u27
This paper presents a novel methodology to calculate cation diffusion coefficients and activation energies in cubic Y2O3–ZrO2 by Molecular Dynamics. The calculation is based upon modulating the interaction potential to promote cation mobility within the lattice. The technique was calibrated by measuring static properties and oxygen self-diffusion characteristics, and then applied to cation diffusion. The respective activation energies and diffusion coefficients agree well with experimental findings. Preliminary results about grain boundary cation diffusion are presented for the first time as a proof of the potentiality of the procedureMinisterio de Ciencia e Innovación MAT2009-14351-C02-01, MAT2009-14351-C02-02Agencia Española de Cooperación Internacional y Desarrollo 53687
First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV
A direct measurement of the helicity dependence of the total photoabsorption
cross section on the proton was carried out at MAMI (Mainz) in the energy range
200 < E_gamma < 800 MeV. The experiment used a 4 detection system, a
circularly polarized tagged photon beam and a frozen spin target.
The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward
spin polarizability determined from the data are 226 \pm 5 (stat)\pm
12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for
200 < E_\gamma < 800 MeV.Comment: 6 pages, 3 figures, 3 table
Mindfulness-based interventions for young offenders: a scoping review
Youth offending is a problem worldwide. Young people in the criminal justice system have frequently experienced adverse childhood circumstances, mental health problems, difficulties regulating emotions and poor quality of life. Mindfulness-based interventions can help people manage problems resulting from these experiences, but their usefulness for youth offending populations is not clear. This review evaluated existing evidence for mindfulness-based interventions among such populations. To be included, each study used an intervention with at least one of the three core components of mindfulness-based stress reduction (breath awareness, body awareness, mindful movement) that was delivered to young people in prison or community rehabilitation programs. No restrictions were placed on methods used. Thirteen studies were included: three randomized controlled trials, one controlled trial, three pre-post study designs, three mixed-methods approaches and three qualitative studies. Pooled numbers (n = 842) comprised 99% males aged between 14 and 23. Interventions varied so it was not possible to identify an optimal approach in terms of content, dose or intensity. Studies found some improvement in various measures of mental health, self-regulation, problematic behaviour, substance use, quality of life and criminal propensity. In those studies measuring mindfulness, changes did not reach statistical significance. Qualitative studies reported participants feeling less stressed, better able to concentrate, manage emotions and behaviour, improved social skills and that the interventions were acceptable. Generally low study quality limits the generalizability of these findings. Greater clarity on intervention components and robust mixed-methods evaluation would improve clarity of reporting and better guide future youth offending prevention programs
Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV
A phase space coalescence description based on the Wigner-function method for
cluster formation in relativistic nucleus-nucleus collisions is presented. The
momentum distributions of nuclear clusters d,t and He are predicted for central
Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD
transport approach. Transverse expansion leads to a strong shoulder-arm shape
and different inverse slope parameters in the transverse spectra of nuclear
clusters deviating markedly from thermal distributions. A clear ``bounce-off''
event shape is seen: the averaged transverse flow velocities in the reaction
plane are for clusters larger than for protons. The cluster yields
--particularly at low at midrapidities-- and the in-plane (anti)flow of
clusters and pions change if suitably strong baryon potential interactions are
included. This allows to study the transient pressure at high density via the
event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.
- …