10 research outputs found

    CLIC: a pogram on cultivating true leadership

    Get PDF
    12 May 2012. A Program on cultivating true leadership skills helped participants became more effective team members. Solving jigsaw puzzles using leaders’ portraits, putting leader related situations into drawings, stepping oneself into a leader’s shoe and playing games involving teamworking and leadership values were among the activities enjoyed by the participants of the CLIC program (Contemporary Leadership in Community)

    Conformational dynamics of the tetracycline-binding aptamer

    Get PDF
    The conformational dynamics induced by ligand binding to the tetracycline-binding aptamer is monitored via stopped-flow fluorescence spectroscopy and time-correlated single photon counting experiments. The fluorescence of the ligand is sensitive to changes within the tertiary structure of the aptamer during and after the binding process. In addition to the wild-type aptamer, the mutants A9G, A13U and A50U are examined, where bases important for regulation are changed to inhibit the aptamer’s function. Our results suggest a very fast two-step-mechanism for the binding of the ligand to the aptamer that can be interpreted as a binding step followed by a reorganization of the aptamer to accommodate the ligand. Binding to the two direct contact points A13 and A50 was found to occur in the first binding step. The exchange of the structurally important base A9 for guanine induces an enormous deceleration of the overall binding process, which is mainly rooted in an enhancement of the back reaction of the first binding step by several orders of magnitude. This indicates a significant loss of tertiary structure of the aptamer in the absence of the base A9, and underlines the importance of pre-organization on the overall binding process of the tetracycline-binding aptamer

    Data concerning the chromatographic isolation of bovine IgG from milk- and colostral whey

    No full text
    Data included are related to the research article "Isolation of biofunctional bovine immunoglobulin G from milk- and colostral whey with mixed-mode chromatography at lab and pilot scale" (Heidebrecht et al., 2018) [1]. Data show individual bovine whey proteins in flow-through and elution fractions using different chromatographic resins as well as different binding and elution conditions. The relevant analytical methods for individual protein detection were SDS-PAGE and reversed phase- high performance liquid chromatography. The focus of the data is on the two mixed mode materials MEP HyperCel™ and Capto™-multimodal chromatography. Resins were used individually, in series and at different scale. Data provide information at which binding and elution conditions it is possible to isolate bovine IgG from milk and colostral whey and at which purity

    Data concerning the chromatographic isolation of bovine IgG from milk- and colostral whey

    Get PDF
    Data included are related to the research article "Isolation of biofunctional bovine immunoglobulin G from milk- and colostral whey with mixed-mode chromatography at lab and pilot scale" (Heidebrecht et al., 2018) [1]. Data show individual bovine whey proteins in flow-through and elution fractions using different chromatographic resins as well as different binding and elution conditions. The relevant analytical methods for individual protein detection were SDS-PAGE and reversed phase- high performance liquid chromatography. The focus of the data is on the two mixed mode materials MEP HyperCel™ and Capto™-multimodal chromatography. Resins were used individually, in series and at different scale. Data provide information at which binding and elution conditions it is possible to isolate bovine IgG from milk and colostral whey and at which purity

    Isolation of biofunctional bovine immunoglobulin G from milk- and colostral whey with mixed-mode chromatography at lab and pilot scale

    No full text
    The aim of the present work was to develop a new scalable and cost-efficient process to isolate bovine immunoglobulin G from colostral whey with high purity and minimal loss of activity. The mixed mode material Mercapto-Ethyl-Pyridine-Hypercel™ was identified appropriate for direct capture of immunoglobulin G. The binding mechanism is primarily based on hydrophobic interactions at physiological conditions. As compared to immunoglobulin G, all other low molecular whey proteins such as α-Lactalbumin or β-Lactoglobulin, except lactoperoxidase, are more hydrophilic and were therefore found in the flow-through fraction. In order to remove lactoperoxidase as an impurity the column was combined in series with a second mixed mode material (Capto™- with N-benzoyl-homocysteine as ligand) using the same binding conditions. At pH 7.5 the carboxyl group of this ligand is negatively charged and can hence bind the positively charged lactoperoxidase, whose isoelectric point is at pH 9.6. After sample application, the columns were eluted separately. By combining the two columns it was possible to obtain immunoglobulin G with a purity of >96.1% and yield of 65-80%. The process development was carried out using 1 mL columns and upscaling was performed in three steps up to a column volume of 8800 mL for the Hypercel™ column and 3000 mL for the Capto™- column. At this scale it is possible to obtain 130-150 g pure immunoglobulin G from 3 L colostrum within five hours, including the regeneration of both columns. Additionally, the impact of freeze-drying on the isolated immunoglobulin G was studied. The nativity of the freeze dried immunoglobulin was above 95%, which was proven by reversed phase liquid chromatography and validated by differential scanning calorimetry. The activity of immunoglobulin G was preserved over the isolation process and during drying as measured by enzyme-linked immunosorbent assay. In conclusion, by applying the proposed isolation process, it becomes feasible to obtain pure, active and stable imunnunoglobulin G at large scale

    Isolation of biofunctional bovine immunoglobulin G from milk- and colostral whey with mixed-mode chromatography at lab and pilot scale

    No full text
    The aim of the present work was to develop a new scalable and cost-efficient process to isolate bovine immunoglobulin G from colostral whey with high purity and minimal loss of activity. The mixed mode material Mercapto-Ethyl-Pyridine-Hypercel™ was identified appropriate for direct capture of immunoglobulin G. The binding mechanism is primarily based on hydrophobic interactions at physiological conditions. As compared to immunoglobulin G, all other low molecular whey proteins such as α-Lactalbumin or β-Lactoglobulin, except lactoperoxidase, are more hydrophilic and were therefore found in the flow-through fraction. In order to remove lactoperoxidase as an impurity the column was combined in series with a second mixed mode material (Capto™- with N-benzoyl-homocysteine as ligand) using the same binding conditions. At pH 7.5 the carboxyl group of this ligand is negatively charged and can hence bind the positively charged lactoperoxidase, whose isoelectric point is at pH 9.6. After sample application, the columns were eluted separately. By combining the two columns it was possible to obtain immunoglobulin G with a purity of >96.1% and yield of 65-80%. The process development was carried out using 1 mL columns and upscaling was performed in three steps up to a column volume of 8800 mL for the Hypercel™ column and 3000 mL for the Capto™- column. At this scale it is possible to obtain 130-150 g pure immunoglobulin G from 3 L colostrum within five hours, including the regeneration of both columns. Additionally, the impact of freeze-drying on the isolated immunoglobulin G was studied. The nativity of the freeze dried immunoglobulin was above 95%, which was proven by reversed phase liquid chromatography and validated by differential scanning calorimetry. The activity of immunoglobulin G was preserved over the isolation process and during drying as measured by enzyme-linked immunosorbent assay. In conclusion, by applying the proposed isolation process, it becomes feasible to obtain pure, active and stable imunnunoglobulin G at large scale
    corecore