3,654 research outputs found

    Machines Learning - Towards a New Synthetic Autobiographical Memory

    Get PDF
    Autobiographical memory is the organisation of episodes and contextual information from an individual’s experiences into a coherent narrative, which is key to our sense of self. Formation and recall of autobiographical memories is essential for effective, adaptive behaviour in the world, providing contextual information necessary for planning actions and memory functions such as event reconstruction. A synthetic autobiographical memory system would endow intelligent robotic agents with many essential components of cognition through active compression and storage of historical sensorimotor data in an easily addressable manner. Current approaches neither fulfil these functional requirements, nor build upon recent understanding of predictive coding, deep learning, nor the neurobiology of memory. This position paper highlights desiderata for a modern implementation of synthetic autobiographical memory based on human episodic memory, and proposes that a recently developed model of hippocampal memory could be extended as a generalised model of autobiographical memory. Initial implementation will be targeted at social interaction, where current synthetic autobiographical memory systems have had success

    From Molecular Cores to Planet-forming Disks with SIRTF

    Full text link
    The SIRTF mission and the Legacy programs will provide coherent data bases for extra-galactic and Galactic science that will rapidly become available to researchers through a public archive. The capabilities of SIRTF and the six legacy programs are described briefly. Then the cores to disks (c2d) program is described in more detail. The c2d program will use all three SIRTF instruments (IRAC, MIPS, and IRS) to observe sources from molecular cores to protoplanetary disks, with a wide range of cloud masses, stellar masses, and star-forming environments. The SIRTF data will stimulate many follow-up studies, both with SIRTF and with other instruments.Comment: 6 pages, from Fourth Cologne-Bonn-Zermatt-Symposium, The Dense Interstellar Matter in Galaxie

    Morphology of Vaccine RD&D translation

    Full text link
    Translation as a concept coordinates participation in innovation but remains a qualitative construct. We provide multivariate accounting of linkages between market entries of vaccines, clinical trials, patents, publications, funders, and grants to quantify biomedical translation. We found that the most prevalent types of biomedical translation are those between basic and applied research (52 percent) followed by those between research and product development (36 percent). Although many biomedical stakeholders assume knowledge flows one way from upstream research to downstream application, knowledge feedbacks that mediate translation are prevalent. We also cluster biomedical funders based on the types of translations they fund. Large-scale funding agencies such as NIH are similarly involved in early-stage translation, whereas pharmaceuticals and mission-oriented agencies such as DARPA involve diverse translation types, and each leaves different translation footprints

    Auxetic structure for increased power output of strain vibration energy harvester (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordAll data created during this research are in ORE at: https://doi.org/10.24378/exe.703This paper develops an auxetic (negative Poisson’s ratio) piezoelectric energy harvester (APEH) to increase the power output when harnessing strain energy. The APEH consists of a piezoelectric element bonded to an auxetic substrate. The auxetic substrate concentrates the stress and strain into the piezoelectric element’s region and introduces auxetic behaviour in the piezoelectric element, both of which increase the electric power output. A finite element model was developed to optimise the design and verify the mechanism of the power increase. Three APEHs were manufactured and characterised. Their performance was compared with two equivalent strain energy harvesters with plain substrates. Experimental results show that the APEHs, excited by sinusoidal strains peak to-peak of 250 με at 10 Hz, are able to produce electric power of up to 191.1 µW, which is 14.4 times of the peak power produced by the plain harvesters (13.4 µW). The power gain factor is constant between samples as the amplitude and frequency of their applied strains are varied. The model and experimental results are in good agreement, once accounting for the imperfect bonding of the epoxy using the spring constant of the Thin Elastic Layers on the modelled epoxy surfaces.We acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1

    Metabonomics and Intensive Care

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901

    Submillimeter Studies of Prestellar Cores and Protostars: Probing the Initial Conditions for Protostellar Collapse

    Full text link
    Improving our understanding of the initial conditions and earliest stages of protostellar collapse is crucial to gain insight into the origin of stellar masses, multiple systems, and protoplanetary disks. Observationally, there are two complementary approaches to this problem: (1) studying the structure and kinematics of prestellar cores observed prior to protostar formation, and (2) studying the structure of young (e.g. Class 0) accreting protostars observed soon after point mass formation. We discuss recent advances made in this area thanks to (sub)millimeter mapping observations with large single-dish telescopes and interferometers. In particular, we argue that the beginning of protostellar collapse is much more violent in cluster-forming clouds than in regions of distributed star formation. Major breakthroughs are expected in this field from future large submillimeter instruments such as Herschel and ALMA.Comment: 12 pages, 9 figures, to appear in the proceedings of the conference "Chemistry as a Diagnostic of Star Formation" (C.L. Curry & M. Fich eds.

    Serial optical coherence microscopy for label-free volumetric histopathology

    Get PDF
    The observation of histopathology using optical microscope is an essential procedure for examination of tissue biopsies or surgically excised specimens in biological and clinical laboratories. However, slide-based microscopic pathology is not suitable for visualizing the large-scale tissue and native 3D organ structure due to its sampling limitation and shallow imaging depth. Here, we demonstrate serial optical coherence microscopy (SOCM) technique that offers label-free, high-throughput, and large-volume imaging of ex vivo mouse organs. A 3D histopathology of whole mouse brain and kidney including blood vessel structure is reconstructed by deep tissue optical imaging in serial sectioning techniques. Our results demonstrate that SOCM has unique advantages as it can visualize both native 3D structures and quantitative regional volume without introduction of any contrast agents
    corecore