41 research outputs found
Determining monkey free choice long before the choice is made: the principal role of prefrontal neurons involved in both decision and motor processes
When choices are made freely, they might emerge from pre-existing neural activity. However, whether neurons in the prefrontal cortex (PF) show this anticipatory effect and, if so, in which part of the process they are involved is still debated. To answer this question, we studied PF activity in monkeys while they performed a strategy task. In this task when the stimulus changed from the previous trial, the monkeys had to shift their response to one of two spatial goals, excluding the one that had been previously selected. Under this free-choice condition, the prestimulus activity of the same neurons that are involved in decision and motor processes predicted future choices. These neurons developed the same goal preferences during the prestimulus presentation as they did later in the decision phase. In contrast, the same effect was not observed in motor-only neurons and it was present but weaker in decision-only neurons. Overall, our results suggest that the PF neuronal activity predicts upcoming actions mainly through the decision-making network that integrate in time decision and motor task aspects
Interference between space and time estimations: from behavior to neurons
Influences between time and space can be found in our daily life in which we are surrounded by numerous spatial metaphors to refer to time. For instance, when we move files from one folder to another in our computer a horizontal line that grows from left to right informs us about the elapsed and remaining time to finish the procedure and, similarly, in our communication we use several spatial terms to refer to time. Although with some differences in the degree of interference, not only space has an influence on time but both magnitudes influence each other. Indeed, since our childhood our estimations of time are influenced by space even when space should be irrelevant and the same occurs when estimating space with time as distractor. Such interference between magnitudes has also been observed in monkeys even if they do not use language or computers, suggesting that the two magnitudes are tightly coupled beyond communication and technology. Imaging and lesion studies have indicated that same brain areas are involved during the processing of both magnitudes and have suggested that rather than coding the specific magnitude itself the brain represents them as abstract concepts. Recent neurophysiological studies in prefrontal cortex, however, have shown that the coding of absolute and relative space and time in this area is realized by independent groups of neurons. Interestingly, instead, a high overlap was observed in this same area in the coding of goal choices across tasks. These results suggest that rather than during perception or estimation of space and time the interference between the two magnitudes might occur, at least in the prefrontal cortex, in a subsequent phase in which the goal has to be chosen or the response provided
Independent coding of absolute duration and distance magnitudes in the prefrontal cortex
The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF
Coding of self and other's future choices in dorsal premotor cortex during social interaction
Representing others’ intentions is central to primate social life. We explored the role of dorsal premotor cortex (PMd) in discriminating between self and others’ behavior while two male rhesus monkeys performed a non-match-to-goal task in a monkey-human paradigm. During each trial, two of four potential targets were randomly presented on the right and left parts of a screen, and the monkey or the human was required to choose the one that did not match the previously chosen target. Each agent had to monitor the other's action in order to select the correct target in that agent's own turn. We report neurons that selectively encoded the future choice of the monkey, the human agent, or both. Our findings suggest that PMd activity shows a high degree of self-other differentiation during face-to-face interactions, leading to an independent representation of what others will do instead of entailing self-centered mental rehearsal or mirror-like activities. Understanding others’ intentions is essential to successful primate social life. Cirillo et al. explore the role of dorsal premotor cortex (PMd) in discriminating between self and others’ behavior while macaques interacted with humans. They show that the majority of neurons encoding the future choice did so selectively for the monkey or the human agent. PMd thus differentiates self from others’ behavior, leading to independent representations of future actions
Outcome modulation across tasks in the primate dorsolateral prefrontal cortex
Animals need to learn and to adapt to new and changing environments so that appropriate actions that lead to desirable outcomes are acquired within each context. The prefrontal cortex (PF) is known to underlie such function that directly implies that the outcome of each response must be represented in the brain for behavioral policies update. However, whether such PF signal is context dependent or it is a general representation beyond the specificity of a context is still unclear. Here, we analyzed the activity of neurons in the dorsolateral PF (PFdl) recorded while two monkeys performed two perceptual magnitude discrimination tasks. Both tasks were well known by the monkeys and unexpected changes did not occur but the difficulty of the task varied from trial to trial and thus the monkeys made mistakes in a proportion of trials. We show a context-independent coding of the response outcome with neurons maintaining similar selectivity in both task contexts. Using a classification method of the neural activity, we also show that the trial outcome could be well predicted from the activity of the same neurons in the two contexts. Altogether, our results provide evidence of high degree of outcome generality in PFdl
Alcohol-induced damage to the fimbria/fornix reduces hippocampal-prefrontal cortex connection during early abstinence
[EN] IntroductionAlcohol dependence is characterized by a gradual reduction in cognitive control and inflexibility to contingency changes. The neuroadaptations underlying this aberrant behavior are poorly understood. Using an animal model of alcohol use disorders (AUD) and complementing diffusion-weighted (dw)-MRI with quantitative immunohistochemistry and electrophysiological recordings, we provide causal evidence that chronic intermittent alcohol exposure affects the microstructural integrity of the fimbria/fornix, decreasing myelin basic protein content, and reducing the effective communication from the hippocampus (HC) to the prefrontal cortex (PFC). Using a simple quantitative neural network model, we show how disturbed HC-PFC communication may impede the extinction of maladaptive memories, decreasing flexibility. Finally, combining dw-MRI and psychometric data in AUD patients, we discovered an association between the magnitude of microstructural alteration in the fimbria/fornix and the reduction in cognitive flexibility. Overall, these findings highlight the vulnerability of the fimbria/fornix microstructure in AUD and its potential contribution to alcohol pathophysiology.Fimbria vulnerability to alcohol underlies hippocampal-prefrontal cortex dysfunction and correlates with cognitive impairment.The authors acknowledge funding from the European Union Horizon 2020
research and innovation program under Grant Agreement No. 668863
(SyBil-AA), and the Spanish Ministerio de Ciencia e InnovaciĂłn, Agencia Estatal
de InvestigaciĂłn (PID2021-128158NB-C21 [to S.C.] and PID2021-128909NA-I00
[to S.D.S.]) and Programs for Centres of Excellence in R&D Severo Ochoa
(CEX2021-001165-S [to S.C. and S.D.S.]), the Spanish Generalitat Valenciana
Government (PROMETEO/2019/015 [to SC] and CIDEGENT/2021/015 [to SDS]),
the Spanish Ministerio de Sanidad, Servicios Sociales e Igualdad (#2021I082).
W.H.S., F.K. and P.K. further acknowledge funding by the Deutsche Forschungs
Gesellschaft through the Collaborative research Center grant TRR265 EnCoDe
[138]. F.K. and P.K. also acknowledge funding by the Deutsche Forschungs
Gesellschaft through the Collaborative Research Center SFB636 (Project D6).
Open Access funding provided thanks to the CRUE-CSIC agreement with
Springer Nature.PĂ©rez-Cervera, L.; De Santis, S.; Marcos, E.; Ghorbanzad-Ghaziany, Z.; TrouvĂ©-Carpena, A.; Selim, MK.; PĂ©rez-RamĂrez, Ăš.... (2023). Alcohol-induced damage to the fimbria/fornix reduces hippocampal-prefrontal cortex connection during early abstinence. Acta Neuropathologica Communications. 11(1):1-21. https://doi.org/10.1186/s40478-023-01597-812111
Nootropic effects of LSD: Behavioral, molecular and computational evidence
The therapeutic use of classical psychedelic substances such as d-lysergic acid diethylamide (LSD) surged in recent years. Studies in rodents suggest that these effects are produced by increased neural plasticity, including stimulation of the mTOR pathway, a key regulator of metabolism, plasticity, and aging. Could psychedelic-induced neural plasticity be harnessed to enhance cognition? Here we show that LSD treatment enhanced performance in a novel object recognition task in rats, and in a visuo-spatial memory task in humans. A proteomic analysis of human brain organoids showed that LSD affected metabolic pathways associated with neural plasticity, including mTOR. To gain insight into the relation of neural plasticity, aging and LSD-induced cognitive gains, we emulated the experiments in rats and humans with a neural network model of a cortico-hippocampal circuit. Using the baseline strength of plasticity as a proxy for age and assuming an increase in plasticity strength related to LSD dose, the simulations provided a good fit for the experimental data. Altogether, the results suggest that LSD has nootropic effects.This project was supported by the Beckley Foundation; Fundação de Amparo Ă Pesquisa do Estado do Rio de Janeiro, Coordenação de Aperfeiçoamento de Pessoal de NĂvel Superior (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq) (grants 308775/2015-5 and 408145/2016-1), SĂŁo Paulo Research Foundation grants (2013/07699-0, 2014/10068-4, 2017/25588-1 and 2019/00098-7), intramural grants from D'Or Institute and Federal University of Rio Grande do Norte, and a Juan de la Cierva-IncorporaciĂłn Scholarship (IJCI-2016-27864) from the Spanish Ministry of Science, Innovation and Universities, and a Newton International Fellowship from the Royal Society.Peer reviewe
Modelling human choices: MADeM and decision‑making
Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)