43 research outputs found

    Asymmetric introgression reveals the genetic architecture of a plumage trait

    Get PDF
    Genome-wide variation in introgression rates across hybrid zones offers a powerful opportunity for studying population differentiation. One poorly understood pattern of introgression is the geographic displacement of a trait implicated in lineage divergence from genome-wide population boundaries. While difficult to interpret, this pattern can facilitate the dissection of trait genetic architecture because traits become uncoupled from their ancestral genomic background. We studied an example of trait displacement generated by the introgression of head plumage coloration from personata to alba subspecies of the white wagtail. A previous study of their hybrid zone in Siberia revealed that the geographic transition in this sexual signal that mediates assortative mating was offset from other traits and genetic markers. Here we show that head plumage is associated with two small genetic regions. Despite having a simple genetic architecture, head plumage inheritance is consistent with partial dominance and epistasis, which could contribute to its asymmetric introgression. Hybrid zones are windows into the evolutionary process. Semenov et al. find that the head plumage differences between white wagtail subspecies have a simple genetic basis involving two small genetic regions, in which partially dominant and epistatic interactions help to explain how this sexual signal has become decoupled from other plumage traits

    Rapid adaptive radiation of Darwin's finches depends on ancestral genetic modules

    Get PDF
    Recent adaptive radiations are models for investigating mechanisms contributing to the evolution of biodiversity. An unresolved question is the relative importance of new mutations, ancestral variants, and introgressive hybridization for phenotypic evolution and speciation. Here, we address this issue using Darwin's finches and investigate the genomic architecture underlying their phenotypic diversity. Admixture mapping for beak and body size in the small, medium, and large ground finches revealed 28 loci showing strong genetic differentiation. These loci represent ancestral haplotype blocks with origins predating speciation events during the Darwin's finch radiation. Genes expressed in the developing beak are overrepresented in these genomic regions. Ancestral haplotypes constitute genetic modules for selection and act as key determinants of the unusual phenotypic diversity of Darwin's finches. Such ancestral haplotype blocks can be critical for how species adapt to environmental variability and change

    Sex role similarity and sexual selection predict male and female song elaboration and dimorphism in fairy-wrens

    Get PDF
    Historically, bird song complexity was thought to evolve primarily through sexual selection on males; yet, in many species, both sexes sing and selection pressure on both sexes may be broader. Previous research suggests competition for mates and resources during short, synchronous breeding seasons leads to more elaborate male songs at high, temperate latitudes. Furthermore, we expect male–female song structure and elaboration to be more similar at lower, tropical latitudes, where longer breeding seasons and year-round territoriality yield similar social selection pressures in both sexes. However, studies seldom take both types of selective pressures and sexes into account. We examined song in both sexes in 15 populations of nine-fairy- wren species (Maluridae), a Southern Hemisphere clade with female song. We compared song elaboration (in both sexes) and sexual song dimorphism to latitude and life-history variables tied to sexual and social selection pressures and sex roles. Our results suggest that song elaboration evolved in part due to sexual competition in males: male songs were longer than female songs in populations with low male survival and less male provisioning. Also, female songs evolved independently of male songs: female songs were slower paced than male songs, although only in less synchronously breeding populations. We also found male and female songs were more similar when parental care was more equal and when male survival was high, which provides strong evidence that sex role similarity correlates with male–female song similarity. Contrary to Northern Hemisphere latitudinal patterns, male and female songs were more similar at higher, temperate latitudes. These results suggest that selection on song can be sex specific, with male song elaboration favored in contexts with stronger sexual selection. At the same time, selection pressures associated with sex role similarity appear to favor sex role similarity in song structure

    Multiple hypotheses explain variation in extra-pair paternity at different levels in a single bird family

    Get PDF
    Extra‐pair paternity (EPP), where offspring are sired by a male other than the social male, varies enormously both within and among species. Trying to explain this variation has proved difficult because the majority of the interspecific variation is phylogenetically based. Ideally, variation in EPP should be investigated in closely related species, but clades with sufficient variation are rare. We present a comprehensive multifactorial test to explain variation in EPP among individuals in 20 populations of nine species over 89 years from a single bird family (Maluridae). Females had higher EPP in the presence of more helpers, more neighbours or if paired incestuously. Furthermore, higher EPP occurred in years with many incestuous pairs, populations with many helpers and species with high male density or in which males provide less care. Altogether, these variables accounted for 48% of the total and 89% of the interspecific and interpopulation variation in EPP. These findings indicate why consistent patterns in EPP have been so challenging to detect and suggest that a single predictor is unlikely to account for the enormous variation in EPP across levels of analysis. Nevertheless, it also shows that existing hypotheses can explain the variation in EPP well and that the density of males in particular is a good predictor to explain variation in EPP among species when a large part of the confounding effect of phylogeny is excluded

    Enbody_Behavioral_Ecology_2018_Testosterone_Raw_Data

    No full text
    Raw testosterone data (plasma testosterone levels) to be processed by Androgens_Comparative.Rmd

    Enbody_Behavioral_Ecology_2018_Rscript_Testosterone_Data

    No full text
    An R markdown file (easily opened in RStudio) for analyzing raw testosterone data (in Enbody_WSFW_androgens.csv). Requires local installation of several R packages

    Ecological adaptation in European eels is based on phenotypic plasticity

    Get PDF
    The relative role of genetic adaptation and phenotypic plasticity is of fundamental importance in evolutionary ecology [M. J. West-Eberhard, Proc. Natl. Acad. Sci. U.S.A. 102 (suppl. 1), 6543-6549 (2005)]. European eels have a complex life cycle, including transitions between life stages across ecological conditions in the Sargasso Sea, where spawning occurs, and those in brackish and freshwater bodies from northern Europe to northern Africa. Whether continental eel populations consist of locally adapted and genetically distinct populations or comprise a single panmictic population has received conflicting support. Here we use whole-genome sequencing and show that European eels belong to one panmictic population. A complete lack of geographical genetic differentiation is demonstrated. We postulate that this is possible because the most critical life stages-spawning and embryonic development-take place under near-identical conditions in the Sargasso Sea. We further show that within-generation selection, which has recently been proposed as a mechanism for genetic adaptation in eels, can only marginally change allele frequencies between cohorts of eels from different geographic regions. Our results strongly indicate plasticity as the predominant mechanism for how eels respond to diverse environmental conditions during postlarval stages, ultimately solving a long-standing question for a classically enigmatic species

    Data from: Female ornamentation is associated with elevated aggression and testosterone in a tropical songbird

    No full text
    In males, testosterone plays a key role in ornament production and linking ornamentation with reproductive behaviors and other traits to produce an integrated phenotype. Less is known about whether females couple testosterone, ornamentation, and aggressive behaviors to achieve female-specific combinations of traits. Ornamentation in females may be the result of correlated expression with male ornamentation, or female traits could arise as the result of sex specific selection pressures. Resolving between these alternatives is necessary to understand the degree to which selection acts on female traits. The White-shouldered Fairywren (Malurus alboscapulatus) provides a useful context to address these questions because populations vary in degree of female ornamentation, a derived trait, whereas male ornamentation is constant across both populations. We found that ornamented females have higher levels of circulating testosterone and respond more aggressively to experimental territorial intrusions than do unornamented females. These findings are consistent with the idea that, among female White-shouldered Fairywrens, testosterone may mechanistically link plumage and behavioral traits to produce an integrated competitive phenotype, as has been reported for males of closely related species. In contrast, circulating testosterone in males did not differ significantly between populations. More broadly, our findings are consistent with ongoing selection on the mechanisms underlying female ornaments, likely via social selection

    Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring-An Inactive Enzyme with Intact Substrate Binding

    Get PDF
    Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, differing by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to differences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners
    corecore