294 research outputs found

    New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products

    Get PDF
    In this paper, we study the impact of the inclusion of the recently measured beta decay properties of the 102;104;105;106;107^{102;104;105;106;107}Tc, 105^{105}Mo, and 101^{101}Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes 235,238^{235, 238}U, and 239,241^{239,241}Pu. These actinides are the main contributors to the fission processes in Pressurized Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo and Nb isotopes have been found to play a major role in the γ\gamma component of the decay heat of 239^{239}Pu, solving a large part of the γ\gamma discrepancy in the 4 to 3000\,s range. They have been measured using the Total Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations are performed using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of 235^{235}U, 239,241^{239,241}Pu and in particular of 238^{238}U for which no measurement has been published yet. We conclude that new TAS measurements are mandatory to improve the reliability of the predicted spectra.Comment: 10 pages, 2 figure

    Antineutrino emission and gamma background characteristics from a thermal research reactor

    Full text link
    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\% enrichment in 235^{235}U. In addition, the required off-equilibrium corrections to be applied to converted antineutrino energy spectra of uranium and plutonium isotopes are provided. In a second part, the gamma energy spectrum emitted at the core level is provided and could be used as an input in the simulation of any reactor antineutrino detector installed at such research facilities. Furthermore, a simulation of the core surrounded by the pool and the concrete shielding of the reactor has been developed in order to propagate the emitted gamma rays and neutrons from the core. The origin of these gamma rays and neutrons is discussed and the associated energy spectrum of the photons transported after the concrete walls is displayed.Comment: 14 pages, 11 figures, Data in Appendix A and B (13 pages

    Freeze-out dynamics via charged kaon femtoscopy in √ sNN = 200 GeV central Au + Au collisions

    Get PDF
    We present measurements of three-dimensional correlation functions of like-sign, low-transverse-momentum kaon pairs from √sNN=200 GeV Au+Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event-generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass mT over the interval of 0.55≤mT≤1.15 GeV/c2. While the kaon radii are adequately described by the mT -scaling in the outward and sideward directions, in the longitudinal direction the lowest mT value exceeds the expectations from a pure hydrodynamical model prediction

    The OscSNS White Paper

    Full text link
    There exists a need to address and resolve the growing evidence for short-baseline neutrino oscillations and the possible existence of sterile neutrinos. Such non-standard particles require a mass of 1\sim 1 eV/c2^2, far above the mass scale associated with active neutrinos, and were first invoked to explain the LSND νˉμνˉe\bar \nu_\mu \rightarrow \bar \nu_e appearance signal. More recently, the MiniBooNE experiment has reported a 2.8σ2.8 \sigma excess of events in antineutrino mode consistent with neutrino oscillations and with the LSND antineutrino appearance signal. MiniBooNE also observed a 3.4σ3.4 \sigma excess of events in their neutrino mode data. Lower than expected neutrino-induced event rates using calibrated radioactive sources and nuclear reactors can also be explained by the existence of sterile neutrinos. Fits to the world's neutrino and antineutrino data are consistent with sterile neutrinos at this 1\sim 1 eV/c2^2 mass scale, although there is some tension between measurements from disappearance and appearance experiments. In addition to resolving this potential major extension of the Standard Model, the existence of sterile neutrinos will impact design and planning for all future neutrino experiments. It should be an extremely high priority to conclusively establish if such unexpected light sterile neutrinos exist. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, built to usher in a new era in neutron research, provides a unique opportunity for US science to perform a definitive world-class search for sterile neutrinos.Comment: This white paper is submitted as part of the SNOWMASS planning proces

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} \oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm \oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure

    System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider

    Get PDF
    We measure directed flow (ν_1) for charged particles in Au+Au and Cu+Cu collisions at √S_(NN)=200 and 62.4 GeV, as a function of pseudorapidity (η), transverse momentum (p_t), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to ν_1 in different collision systems, and investigate possible explanations for the observed sign change in ν_1(p_t)

    Spin alignment measurements of the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons at RHIC

    Get PDF
    We present the first spin alignment measurements for the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at sNN\sqrt{s_{NN}} = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are ρ00\rho_{00} = 0.32 ±\pm 0.04 (stat) ±\pm 0.09 (syst) for the K0K^{*0} (0.8<pT<5.00.8<p_T<5.0 GeV/c) and ρ00\rho_{00} = 0.34 ±\pm 0.02 (stat) ±\pm 0.03 (syst) for the ϕ\phi (0.4<pT<5.00.4<p_T<5.0 GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for K0K^{*0} and ϕ\phi in Au+Au collisions were also measured with respect to the particle's production plane. The ϕ\phi result, ρ00\rho_{00} = 0.41 ±\pm 0.02 (stat) ±\pm 0.04 (syst), is consistent with that in p+p collisions, ρ00\rho_{00} = 0.39 ±\pm 0.03 (stat) ±\pm 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.Comment: 7 pages, 4 figures. fig.1 updated; one more reference added, one typo corrected, published in PRC.77.06190
    corecore