24 research outputs found

    Identification and characterization of new imprinted genes in the human placenta

    No full text
    L’empreinte parentale est un phénomène épigénétique complexe qui régule l’expression mono-allélique de certains gènes en fonction de l’origine parentale de l’allèle. Les gènes soumis à empreinte (GSE) participent au développement placentaire et fœtal. Ces gènes présentent un intérêt du point de vue fondamental notamment pour leur régulation épigénétique, leur rôle dans les échanges fœto-maternels et le développement du système nerveux. Du point de vue clinique, ils sont impliqués dans les pathologies de la grossesse comme la pré-éclampsie et le retard de croissance intra-utérin ainsi que des pathologies neuro-développementales. De nombreux syndromes cliniques associent retard de croissance intra-utérin et déficience intellectuelle suggérant des voies de signalisation communes dans le développement des tissus placentaire et nerveux. La caractérisation de ces GSE pourrait donc permettre la mise en évidence de ces voies. Un peu moins de 100 GSE ont été identifiés à ce jour chez l’Homme. Nous avons donc mené un crible systématique, en utilisant une approche haut débit, pour identifier sans a priori de nouveaux GSE dans le placenta humain. Cette étude pilote a permis dans un premier temps de mettre en évidence sept nouveaux GSE, dont deux présentent, d’après la littérature, une fonction dans le système nerveux : NTM et MAGI2. Dans le présent travail, nous avons étudié 23 nouveaux gènes candidats afin de valider leur statut de GSE, ce qui a conduit à l’identification de trois nouveaux GSE (DSCAM, AIM1 et NCAM2). Nous avons approfondi l’étude pour l’un d’entre eux, à savoir le gène DSCAM qui est localisé sur le chromosome 21, faisant de lui le premier GSE connu sur ce chromosome. DSCAM participe au guidage des neurones lors du développement du système nerveux central et est un gène candidat pour la déficience intellectuelle associée au Down Syndrome. Nous présentons ici les résultats de la caractérisation de ce GSE dans le placenta humain par l’étude (1) des mécanismes épigénétiques, notamment la méthylation des îlots CpG qui pourrait gouverner la mise en place de l’empreinte, (2) de l’expression de DSCAM dans les placentas normaux et pathologiques, ainsi que dans les cellules trophoblastiques humaines avant et après syncytialisation. Par ailleurs, nous présentons les résultats préliminaires d’études dans des modèles animaux et cellulaires. Nous avons évalué le statut d’empreinte dans d’autres espèces (souris et bovin) et d’autres tissus (notamment le cerveau), et étudié l’effet d’un déficit des partenaires moléculaires de DSCAM (souris invalidées pour les gènes Dcc et Netrin-1). Enfin, nous avons utilisé le modèle des cellules endothéliales immortalisées HUVEC pour étudier le rôle de DSCAM dans l’angiogenèse placentaire.Parental imprinting is a complex epigenetic phenomenon that regulates the mono-allelic expression of some genes in a parent-of-origin way. Imprinted genes (IG) contribute to placental and fetal development. These genes are highly interesting for their epigenetic regulation, their role in materno-fetal nutrient exchange and the neuro-development. They are involved in some pregnancy associated diseases such as pre-eclampsia and intrauterine growth retardation as well as in some neuro-developmental imprinting disorders. Many clinical syndromes associate intrauterine growth retardation and intellectual disability suggesting common signaling pathways in the development of placental and nervous tissue. The characterization of IGs could therefore allow their identification. Less than 100 IGs have been identified to date in humans. We carried out a systematic screening, by means of a high-throughput approach, to identify new IGs in the human placenta. This resulted in the identification of seven new IGs, two of which have reported neuronal functions: NTM and MAGI2. In the present work, we investigated 23 new candidate genes in order to validate their imprinting status, which led to the identification of three new IGs (DSCAM, AIM1 and NCAM2). We have further investigated the DSCAM gene, the first one to be identified on chromosome 21. DSCAM participates to the guidance of neurons during central nervous system development and is a candidate gene for intellectual disability in Down Syndrome. We present here a characterization of this IG in the human placenta including (1) the study of epigenetic mechanisms, in particular CpG islands methylation, that could govern the establishment of imprinting in the locus, and (2) the analysis of the expression of DSCAM in normal and pathological placentas, as well as in human trophoblast cells before and after syncytialization. In addition, we present preliminary results from studies in animal and cellular models. We assessed the imprinting status in other species (mouse and bovine) and other tissues (notably the brain), and studied the effect of the invalidation of DSCAM partners (Dcc and Netrin-1 knockout mice). Finally, we used the HUVEC immortalized endothelial cell model to study the role of DSCAM in placental angiogenesis

    Identification et caractérisation de nouveaux gènes soumis à l’empreinte parentale dans le placenta humain

    No full text
    Parental imprinting is a complex epigenetic phenomenon that regulates the mono-allelic expression of some genes in a parent-of-origin way. Imprinted genes (IG) contribute to placental and fetal development. These genes are highly interesting for their epigenetic regulation, their role in materno-fetal nutrient exchange and the neuro-development. They are involved in some pregnancy associated diseases such as pre-eclampsia and intrauterine growth retardation as well as in some neuro-developmental imprinting disorders. Many clinical syndromes associate intrauterine growth retardation and intellectual disability suggesting common signaling pathways in the development of placental and nervous tissue. The characterization of IGs could therefore allow their identification. Less than 100 IGs have been identified to date in humans. We carried out a systematic screening, by means of a high-throughput approach, to identify new IGs in the human placenta. This resulted in the identification of seven new IGs, two of which have reported neuronal functions: NTM and MAGI2. In the present work, we investigated 23 new candidate genes in order to validate their imprinting status, which led to the identification of three new IGs (DSCAM, AIM1 and NCAM2). We have further investigated the DSCAM gene, the first one to be identified on chromosome 21. DSCAM participates to the guidance of neurons during central nervous system development and is a candidate gene for intellectual disability in Down Syndrome. We present here a characterization of this IG in the human placenta including (1) the study of epigenetic mechanisms, in particular CpG islands methylation, that could govern the establishment of imprinting in the locus, and (2) the analysis of the expression of DSCAM in normal and pathological placentas, as well as in human trophoblast cells before and after syncytialization. In addition, we present preliminary results from studies in animal and cellular models. We assessed the imprinting status in other species (mouse and bovine) and other tissues (notably the brain), and studied the effect of the invalidation of DSCAM partners (Dcc and Netrin-1 knockout mice). Finally, we used the HUVEC immortalized endothelial cell model to study the role of DSCAM in placental angiogenesis.L’empreinte parentale est un phénomène épigénétique complexe qui régule l’expression mono-allélique de certains gènes en fonction de l’origine parentale de l’allèle. Les gènes soumis à empreinte (GSE) participent au développement placentaire et fœtal. Ces gènes présentent un intérêt du point de vue fondamental notamment pour leur régulation épigénétique, leur rôle dans les échanges fœto-maternels et le développement du système nerveux. Du point de vue clinique, ils sont impliqués dans les pathologies de la grossesse comme la pré-éclampsie et le retard de croissance intra-utérin ainsi que des pathologies neuro-développementales. De nombreux syndromes cliniques associent retard de croissance intra-utérin et déficience intellectuelle suggérant des voies de signalisation communes dans le développement des tissus placentaire et nerveux. La caractérisation de ces GSE pourrait donc permettre la mise en évidence de ces voies. Un peu moins de 100 GSE ont été identifiés à ce jour chez l’Homme. Nous avons donc mené un crible systématique, en utilisant une approche haut débit, pour identifier sans a priori de nouveaux GSE dans le placenta humain. Cette étude pilote a permis dans un premier temps de mettre en évidence sept nouveaux GSE, dont deux présentent, d’après la littérature, une fonction dans le système nerveux : NTM et MAGI2. Dans le présent travail, nous avons étudié 23 nouveaux gènes candidats afin de valider leur statut de GSE, ce qui a conduit à l’identification de trois nouveaux GSE (DSCAM, AIM1 et NCAM2). Nous avons approfondi l’étude pour l’un d’entre eux, à savoir le gène DSCAM qui est localisé sur le chromosome 21, faisant de lui le premier GSE connu sur ce chromosome. DSCAM participe au guidage des neurones lors du développement du système nerveux central et est un gène candidat pour la déficience intellectuelle associée au Down Syndrome. Nous présentons ici les résultats de la caractérisation de ce GSE dans le placenta humain par l’étude (1) des mécanismes épigénétiques, notamment la méthylation des îlots CpG qui pourrait gouverner la mise en place de l’empreinte, (2) de l’expression de DSCAM dans les placentas normaux et pathologiques, ainsi que dans les cellules trophoblastiques humaines avant et après syncytialisation. Par ailleurs, nous présentons les résultats préliminaires d’études dans des modèles animaux et cellulaires. Nous avons évalué le statut d’empreinte dans d’autres espèces (souris et bovin) et d’autres tissus (notamment le cerveau), et étudié l’effet d’un déficit des partenaires moléculaires de DSCAM (souris invalidées pour les gènes Dcc et Netrin-1). Enfin, nous avons utilisé le modèle des cellules endothéliales immortalisées HUVEC pour étudier le rôle de DSCAM dans l’angiogenèse placentaire

    Identification et caractérisation de nouveaux gènes soumis à l’empreinte parentale dans le placenta humain

    No full text
    Parental imprinting is a complex epigenetic phenomenon that regulates the mono-allelic expression of some genes in a parent-of-origin way. Imprinted genes (IG) contribute to placental and fetal development. These genes are highly interesting for their epigenetic regulation, their role in materno-fetal nutrient exchange and the neuro-development. They are involved in some pregnancy associated diseases such as pre-eclampsia and intrauterine growth retardation as well as in some neuro-developmental imprinting disorders. Many clinical syndromes associate intrauterine growth retardation and intellectual disability suggesting common signaling pathways in the development of placental and nervous tissue. The characterization of IGs could therefore allow their identification. Less than 100 IGs have been identified to date in humans. We carried out a systematic screening, by means of a high-throughput approach, to identify new IGs in the human placenta. This resulted in the identification of seven new IGs, two of which have reported neuronal functions: NTM and MAGI2. In the present work, we investigated 23 new candidate genes in order to validate their imprinting status, which led to the identification of three new IGs (DSCAM, AIM1 and NCAM2). We have further investigated the DSCAM gene, the first one to be identified on chromosome 21. DSCAM participates to the guidance of neurons during central nervous system development and is a candidate gene for intellectual disability in Down Syndrome. We present here a characterization of this IG in the human placenta including (1) the study of epigenetic mechanisms, in particular CpG islands methylation, that could govern the establishment of imprinting in the locus, and (2) the analysis of the expression of DSCAM in normal and pathological placentas, as well as in human trophoblast cells before and after syncytialization. In addition, we present preliminary results from studies in animal and cellular models. We assessed the imprinting status in other species (mouse and bovine) and other tissues (notably the brain), and studied the effect of the invalidation of DSCAM partners (Dcc and Netrin-1 knockout mice). Finally, we used the HUVEC immortalized endothelial cell model to study the role of DSCAM in placental angiogenesis.L’empreinte parentale est un phénomène épigénétique complexe qui régule l’expression mono-allélique de certains gènes en fonction de l’origine parentale de l’allèle. Les gènes soumis à empreinte (GSE) participent au développement placentaire et fœtal. Ces gènes présentent un intérêt du point de vue fondamental notamment pour leur régulation épigénétique, leur rôle dans les échanges fœto-maternels et le développement du système nerveux. Du point de vue clinique, ils sont impliqués dans les pathologies de la grossesse comme la pré-éclampsie et le retard de croissance intra-utérin ainsi que des pathologies neuro-développementales. De nombreux syndromes cliniques associent retard de croissance intra-utérin et déficience intellectuelle suggérant des voies de signalisation communes dans le développement des tissus placentaire et nerveux. La caractérisation de ces GSE pourrait donc permettre la mise en évidence de ces voies. Un peu moins de 100 GSE ont été identifiés à ce jour chez l’Homme. Nous avons donc mené un crible systématique, en utilisant une approche haut débit, pour identifier sans a priori de nouveaux GSE dans le placenta humain. Cette étude pilote a permis dans un premier temps de mettre en évidence sept nouveaux GSE, dont deux présentent, d’après la littérature, une fonction dans le système nerveux : NTM et MAGI2. Dans le présent travail, nous avons étudié 23 nouveaux gènes candidats afin de valider leur statut de GSE, ce qui a conduit à l’identification de trois nouveaux GSE (DSCAM, AIM1 et NCAM2). Nous avons approfondi l’étude pour l’un d’entre eux, à savoir le gène DSCAM qui est localisé sur le chromosome 21, faisant de lui le premier GSE connu sur ce chromosome. DSCAM participe au guidage des neurones lors du développement du système nerveux central et est un gène candidat pour la déficience intellectuelle associée au Down Syndrome. Nous présentons ici les résultats de la caractérisation de ce GSE dans le placenta humain par l’étude (1) des mécanismes épigénétiques, notamment la méthylation des îlots CpG qui pourrait gouverner la mise en place de l’empreinte, (2) de l’expression de DSCAM dans les placentas normaux et pathologiques, ainsi que dans les cellules trophoblastiques humaines avant et après syncytialisation. Par ailleurs, nous présentons les résultats préliminaires d’études dans des modèles animaux et cellulaires. Nous avons évalué le statut d’empreinte dans d’autres espèces (souris et bovin) et d’autres tissus (notamment le cerveau), et étudié l’effet d’un déficit des partenaires moléculaires de DSCAM (souris invalidées pour les gènes Dcc et Netrin-1). Enfin, nous avons utilisé le modèle des cellules endothéliales immortalisées HUVEC pour étudier le rôle de DSCAM dans l’angiogenèse placentaire

    A genome-wide search for new imprinted genes in the human placenta identifies DSCAM as the first imprinted gene on chromosome 21

    No full text
    Notice à reprendre en chantier qualité avec la version finale de l’EditeurInternational audienceWe identified, through a genome-wide search for new imprinted genes in the human placenta, DSCAM (Down Syndrome Cellular Adhesion Molecule) as a paternally expressed imprinted gene. Our work revealed the presence of a Differentially Methylated Region (DMR), located within intron 1 that might regulate the imprinting in the region. This DMR showed a maternal allele methylation, compatible with its paternal expression. We showed that DSCAM is present in endothelial cells and the syncytiotrophoblast layer of the human placenta. In mouse, Dscam expression is biallelic in foetal brain and placenta excluding any possible imprinting in these tissues. This gene encodes a cellular adhesion molecule mainly known for its role in neurone development but its function in the placenta remains unclear. We report here the first imprinted gene located on human chromosome 21 with potential clinical implications

    Could sperm grade under high magnification condition predict IMSI clinical outcome?

    No full text
    Objective: The aim of this study was to examine whether injection of first-best morphology grade selected spermatozoa improves live birth rate (LBR) compared to intracytoplasmic morphologically selected sperm injection (IMSI) using second-best grade sperm. Study design: In this prospective observational study, 132 patients were enrolled. Inclusion criteria were the presence of severe male factor (normal spermatozoa <10% in fresh ejaculated semen and <10% in selected sperm according to David's classification) associated with <= 2 previous ICSI failure. Results of IMSI performed with either first- or second-best morphology grade spermatozoa (according to Vanderzwalmen's classification) were compared. IMSI attempts performed using mixed first- and second-best grade spermatozoa were excluded (n = 41). The primary endpoint was LBR. Results: LBR following IMSI was not statistically different using first- (33.3% (13/39)) or second-best morphology grade spermatozoa (28.9% (15/52)). Our study shows that sperm grading under high magnification using Vanderzwalmen's classification is not correlated to IMSI outcome. Conclusion: We do not validate Vanderzwalmen classification in our external and prospective series. These results point out the need for improving our knowledge about the impact of observed vacuoles under high magnification condition. (C) 2014 Elsevier Ireland Ltd. All rights reserved

    Next Generation Mapping a novel approach that enables the detection of unbalanced as well as balanced structural variants

    No full text
    International audienceStructural variants (SVs) include large unbalanced (CNVs) and balanced variants (insertions, inversions and translocations). Whereas the detection of unbalanced SVs has been significantly improved by technological breakthrough such as Chromosomal Microarray Analysis (CMA), the detection of balanced SVs still relies on karyotype despite its very low resolution. Massively parallel sequencing enables the detection of some SVs but its use in clinical setting is yet limited by technical and computational challenges, among which the read length. Next Generation Mapping using the Bionano system is a novel non-sequencing based technology. Long high molecular weight DNA fragments are labelled at specific sites and then stretched out into a nano-channel system for fluorescence reading. The labelling pattern is then compared to a reference genome pattern allowing for the identification of SVs without complex bioinformatic analyses. We sought to evaluate the performance of this technology and its ease of use in a routine cytogenetic laboratory. Our study includes 29 patients bearing balanced (11 translocations and 4 inversions) or unbalanced SVs (1 unbalanced translocation, 7 CNVs ranging from 500kb to 4Mb), complex chromosomal rearrangements (n=4), isochromosomes (n=2) and one case of aneuploidy, all previously identified by karyotype or CMA. The results are analysed blindly and then compared to karyotype or CMA results. Preliminary data on four samples show reliable detection of the expected SVs. This approach has the potential to improve the resolution of the pangenome detection of different sorts of SVs, and could hence complement or even replace karyotype and CMA as a unique, simple and comprehensive test. This would have a significant clinical impact for diseases in which balanced SVs are mainly involved, such as reproductive diseases and recurrent miscarriages

    Next Generation Mapping a novel approach that enables the detection of unbalanced as well as balanced structural variants

    No full text
    International audienceStructural variants (SVs) include large unbalanced (CNVs) and balanced variants (insertions, inversions and translocations). Whereas the detection of unbalanced SVs has been significantly improved by technological breakthrough such as Chromosomal Microarray Analysis (CMA), the detection of balanced SVs still relies on karyotype despite its very low resolution. Massively parallel sequencing enables the detection of some SVs but its use in clinical setting is yet limited by technical and computational challenges, among which the read length. Next Generation Mapping using the Bionano system is a novel non-sequencing based technology. Long high molecular weight DNA fragments are labelled at specific sites and then stretched out into a nano-channel system for fluorescence reading. The labelling pattern is then compared to a reference genome pattern allowing for the identification of SVs without complex bioinformatic analyses. We sought to evaluate the performance of this technology and its ease of use in a routine cytogenetic laboratory. Our study includes 29 patients bearing balanced (11 translocations and 4 inversions) or unbalanced SVs (1 unbalanced translocation, 7 CNVs ranging from 500kb to 4Mb), complex chromosomal rearrangements (n=4), isochromosomes (n=2) and one case of aneuploidy, all previously identified by karyotype or CMA. The results are analysed blindly and then compared to karyotype or CMA results. Preliminary data on four samples show reliable detection of the expected SVs. This approach has the potential to improve the resolution of the pangenome detection of different sorts of SVs, and could hence complement or even replace karyotype and CMA as a unique, simple and comprehensive test. This would have a significant clinical impact for diseases in which balanced SVs are mainly involved, such as reproductive diseases and recurrent miscarriages

    Next Generation Mapping a novel approach that enables the detection of unbalanced as well as balanced structural variants

    No full text
    International audienceStructural variants (SVs) include large unbalanced (CNVs) and balanced variants (insertions, inversions and translocations). Whereas the detection of unbalanced SVs has been significantly improved by technological breakthrough such as Chromosomal Microarray Analysis (CMA), the detection of balanced SVs still relies on karyotype despite its very low resolution. Massively parallel sequencing enables the detection of some SVs but its use in clinical setting is yet limited by technical and computational challenges, among which the read length. Next Generation Mapping using the Bionano system is a novel non-sequencing based technology. Long high molecular weight DNA fragments are labelled at specific sites and then stretched out into a nano-channel system for fluorescence reading. The labelling pattern is then compared to a reference genome pattern allowing for the identification of SVs without complex bioinformatic analyses. We sought to evaluate the performance of this technology and its ease of use in a routine cytogenetic laboratory. Our study includes 29 patients bearing balanced (11 translocations and 4 inversions) or unbalanced SVs (1 unbalanced translocation, 7 CNVs ranging from 500kb to 4Mb), complex chromosomal rearrangements (n=4), isochromosomes (n=2) and one case of aneuploidy, all previously identified by karyotype or CMA. The results are analysed blindly and then compared to karyotype or CMA results. Preliminary data on four samples show reliable detection of the expected SVs. This approach has the potential to improve the resolution of the pangenome detection of different sorts of SVs, and could hence complement or even replace karyotype and CMA as a unique, simple and comprehensive test. This would have a significant clinical impact for diseases in which balanced SVs are mainly involved, such as reproductive diseases and recurrent miscarriages

    Next Generation Mapping a novel approach that enables the detection of unbalanced as well as balanced structural variants

    No full text
    International audienceStructural variants (SVs) include large unbalanced (CNVs) and balanced variants (insertions, inversions and translocations). Whereas the detection of unbalanced SVs has been significantly improved by technological breakthrough such as Chromosomal Microarray Analysis (CMA), the detection of balanced SVs still relies on karyotype despite its very low resolution. Massively parallel sequencing enables the detection of some SVs but its use in clinical setting is yet limited by technical and computational challenges, among which the read length. Next Generation Mapping using the Bionano system is a novel non-sequencing based technology. Long high molecular weight DNA fragments are labelled at specific sites and then stretched out into a nano-channel system for fluorescence reading. The labelling pattern is then compared to a reference genome pattern allowing for the identification of SVs without complex bioinformatic analyses. We sought to evaluate the performance of this technology and its ease of use in a routine cytogenetic laboratory. Our study includes 29 patients bearing balanced (11 translocations and 4 inversions) or unbalanced SVs (1 unbalanced translocation, 7 CNVs ranging from 500kb to 4Mb), complex chromosomal rearrangements (n=4), isochromosomes (n=2) and one case of aneuploidy, all previously identified by karyotype or CMA. The results are analysed blindly and then compared to karyotype or CMA results. Preliminary data on four samples show reliable detection of the expected SVs. This approach has the potential to improve the resolution of the pangenome detection of different sorts of SVs, and could hence complement or even replace karyotype and CMA as a unique, simple and comprehensive test. This would have a significant clinical impact for diseases in which balanced SVs are mainly involved, such as reproductive diseases and recurrent miscarriages
    corecore