309 research outputs found
Histoire de la souverainetĂ© de lâauteur, XVIIe-XVIIIe siĂšcles
Bernard Edelman Compte rendu non communiqué
Histoire de la souverainetĂ© de lâauteur, XVIIe-XVIIIe siĂšcles
Bernard Edelman Compte rendu non communiqué
Biology of Consciousness
The Dynamic Core and Global Workspace hypotheses were independently put forward to provide mechanistic and biologically plausible accounts of how brains generate conscious mental content. The Dynamic Core proposes that reentrant neural activity in the thalamocortical system gives rise to conscious experience. Global Workspace reconciles the limited capacity of momentary conscious content with the vast repertoire of long-term memory. In this paper we show the close relationship between the two hypotheses. This relationship allows for a strictly biological account of phenomenal experience and subjectivity that is consistent with mounting experimental evidence. We examine the constraints on causal analyses of consciousness and suggest that there is now sufficient evidence to consider the design and construction of a conscious artifact
Convergence of random zeros on complex manifolds
We show that the zeros of random sequences of Gaussian systems of polynomials
of increasing degree almost surely converge to the expected limit distribution
under very general hypotheses. In particular, the normalized distribution of
zeros of systems of m polynomials of degree N, orthonormalized on a regular
compact subset K of C^m, almost surely converge to the equilibrium measure on K
as the degree N goes to infinity.Comment: 16 page
Large Scale Cross-Correlations in Internet Traffic
The Internet is a complex network of interconnected routers and the existence
of collective behavior such as congestion suggests that the correlations
between different connections play a crucial role. It is thus critical to
measure and quantify these correlations. We use methods of random matrix theory
(RMT) to analyze the cross-correlation matrix C of information flow changes of
650 connections between 26 routers of the French scientific network `Renater'.
We find that C has the universal properties of the Gaussian orthogonal ensemble
of random matrices: The distribution of eigenvalues--up to a rescaling which
exhibits a typical correlation time of the order 10 minutes--and the spacing
distribution follow the predictions of RMT. There are some deviations for large
eigenvalues which contain network-specific information and which identify
genuine correlations between connections. The study of the most correlated
connections reveals the existence of `active centers' which are exchanging
information with a large number of routers thereby inducing correlations
between the corresponding connections. These strong correlations could be a
reason for the observed self-similarity in the WWW traffic.Comment: 7 pages, 6 figures, final versio
Acoustic sequences in non-human animals: a tutorial review and prospectus.
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise - let alone understand - the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 'Analysing vocal sequences in animals'. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.This review was developed at an investigative workshop, âAnalyzing Animal Vocal Communication Sequencesâ that took place on October 21â23 2013 in Knoxville, Tennessee, sponsored by the National Institute for Mathematical and Biological Synthesis (NIMBioS). NIMBioS is an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426, with additional support from The University of Tennessee, Knoxville. In addition to the authors, Vincent Janik participated in the workshop. D.T.B.âs research is currently supported by NSF DEB-1119660. M.A.B.âs research is currently supported by NSF IOS-0842759 and NIH R01DC009582. M.A.R.âs research is supported by ONR N0001411IP20086 and NOPP (ONR/BOEM) N00014-11-1-0697. S.L.DeR.âs research is supported by the U.S. Office of Naval Research. R.F.-i-C.âs research was supported by the grant BASMATI (TIN2011-27479-C04-03) from the Spanish Ministry of Science and Innovation. E.C.G.âs research is currently supported by a National Research Council postdoctoral fellowship. E.E.V.âs research is supported by CONACYT, Mexico, award number I010/214/2012.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1111/brv.1216
Control of Mitochondrial Membrane Permeabilization by Adenine Nucleotide Translocator Interacting with HIV-1 Viral Protein R and Bcl-2
Viral protein R (Vpr), an apoptogenic accessory protein encoded by HIV-1, induces mitochondrial membrane permeabilization (MMP) via a specific interaction with the permeability transition pore complex, which comprises the voltage-dependent anion channel (VDAC) in the outer membrane (OM) and the adenine nucleotide translocator (ANT) in the inner membrane. Here, we demonstrate that a synthetic Vpr-derived peptide (Vpr52-96) specifically binds to the intermembrane face of the ANT with an affinity in the nanomolar range. Taking advantage of this specific interaction, we determined the role of ANT in the control of MMP. In planar lipid bilayers, Vpr52-96 and purified ANT cooperatively form large conductance channels. This cooperative channel formation relies on a direct proteinâprotein interaction since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT. When added to isolated mitochondria, Vpr52-96 uncouples the respiratory chain and induces a rapid inner MMP to protons and NADH. This inner MMP precedes outer MMP to cytochrome c. Vpr52-96âinduced matrix swelling and inner MMP both are prevented by preincubation of purified mitochondria with recombinant Bcl-2 protein. In contrast to König's polyanion (PA10), a specific inhibitor of the VDAC, Bcl-2 fails to prevent Vpr52-96 from crossing the mitochondrial OM. Rather, Bcl-2 reduces the ANTâVpr interaction, as determined by affinity purification and plasmon resonance studies. Concomitantly, Bcl-2 suppresses channel formation by the ANTâVpr complex in synthetic membranes. In conclusion, both Vpr and Bcl-2 modulate MMP through a direct interaction with ANT
- âŠ