261 research outputs found

    Angiotensin II type 1/adenosine A2A receptor oligomers: a novel target for tardive dyskinesia

    Get PDF
    Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD

    Swiss residents' speciality choices – impact of gender, personality traits, career motivation and life goals

    Get PDF
    BACKGROUND: The medical specialities chosen by doctors for their careers play an important part in the development of health-care services. This study aimed to investigate the influence of gender, personality traits, career motivation and life goal aspirations on the choice of medical speciality. METHODS: As part of a prospective cohort study of Swiss medical school graduates on career development, 522 fourth-year residents were asked in what speciality they wanted to qualify. They also assessed their career motivation and life goal aspirations. Data concerning personality traits such as sense of coherence, self-esteem, and gender role orientation were collected at the first assessment, four years earlier, in their final year of medical school. Data analyses were conducted by univariate and multivariate analyses of variance and covariance. RESULTS: In their fourth year of residency 439 (84.1%) participants had made their speciality choice. Of these, 45 (8.6%) subjects aspired to primary care, 126 (24.1%) to internal medicine, 68 (13.0%) to surgical specialities, 31 (5.9%) to gynaecology & obstetrics (G&O), 40 (7.7%) to anaesthesiology/intensive care, 44 (8.4%) to paediatrics, 25 (4.8%) to psychiatry and 60 (11.5%) to other specialities. Female residents tended to choose G&O, paediatrics, and anaesthesiology, males more often surgical specialities; the other specialities did not show gender-relevant differences of frequency distribution. Gender had the strongest significant influence on speciality choice, followed by career motivation, personality traits, and life goals. Multivariate analyses of covariance indicated that career motivation and life goals mediated the influence of personality on career choice. Personality traits were no longer significant after controlling for career motivation and life goals as covariates. The effect of gender remained significant after controlling for personality traits, career motivation and life goals. CONCLUSION: Gender had the greatest impact on speciality and career choice, but there were also two other relevant influencing factors, namely career motivation and life goals. Senior physicians mentoring junior physicians should pay special attention to these aspects. Motivational guidance throughout medical training should not only focus on the professional career but also consider the personal life goals of those being mentored

    Caffeine Consumption Prevents Diabetes-Induced Memory Impairment and Synaptotoxicity in the Hippocampus of NONcZNO10/LTJ Mice

    Get PDF
    Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A1 and A2A receptors) emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7–11 months when kept under an 11% fat diet. Caffeine (1 g/l) was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25), mainly glutamatergic (vesicular glutamate transporters), and increased astrogliosis (GFAP immunoreactivity) compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A2A receptors and down-regulated A1 receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes

    Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    Get PDF
    Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.Foundation of Support to Research of Sao Paulo State (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [07/59127-9

    Adenosine A2A receptors: localization and function

    Get PDF
    Adenosine is an endogenous purine nucleoside present in all mammalian tissues, that originates from the breakdown of ATP. By binding to its four receptor subtypes (A1, A2A, A2B, and A3), adenosine regulates several important physiological functions at both the central and peripheral levels. Therefore, ligands for the different adenosine receptors are attracting increasing attention as new potential drugs to be used in the treatment of several diseases. This chapter is aimed at providing an overview of adenosine metabolism, adenosine receptors localization and their signal transduction pathways. Particular attention will be paid to the biochemistry and pharmacology of A2A receptors, since antagonists of these receptors have emerged as promising new drugs for the treatment of Parkinson's disease. The interactions of A2A receptors with other nonadenosinergic receptors, and the effects of the pharmacological manipulation of A2A receptors on different body organs will be discussed, together with the usefulness of A2A receptor antagonists for the treatment of Parkinson's disease and the potential adverse effects of these drugs
    corecore