36 research outputs found

    Understanding Arabidopsis ion homeostasis in the post-genomic era : assigning function to two proteins involved in iron metabolism

    Get PDF
    The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Title from title screen of research.pdf file (viewed on April 27, 2009)Vita.Thesis (Ph.D.) University of Missouri-Columbia 2006.Two projects studying different aspects of iron deficiency in the model plant Arabidopsis thaliana are detailed here. The first project describes the isolation and characterization of the Arabidopsis frd4-1 and frd4-2 mutants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. A number of different hypotheses were tested in an attempt to explain how defects in cpFtsY could affect the expression of root Fe(III) chelate reductase activity. The second project involves the further characterization of the protein FRD3, which was previously shown to be important for the efficient translocation of iron from roots to the shoots. Xylem exudate from frd3 plants contains significantly less citrate and iron than the exudate from wild type plants. Additionally, supplementation of growth media with citrate rescues the frd3 phenotypes. The ectopic expression of FRD3-GFP results in enhanced exudation of citrate from roots. Finally, heterologous studies in Xenopus laevis oocytes reveal that FRD3 mediates the transport of citrate. These results strongly support the hypotheses that FRD3 effluxes citrate into the root vasculature, a process important for the translocation of iron to the leaves, and that iron moves through the xylem as a ferric-citrate complex.Includes bibliographical reference

    Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    Get PDF
    Citation: Bansal, S., & Durrett, T. P. (2016). Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase. Bioscience Reports, 36, 9. doi:10.1042/bsr20160277Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants

    Increasing Oil Production in Camelina sativa Engineered to Synthesize Unusual Lipids

    Get PDF
    Different Euonymus species naturally produce acetyl-triacylglycerol (acTAG) in their seed oil. AcTAG are unusual structures of the triacylglycerols (TAG) typically found in vegetable oil, and have lower freezing points and viscosity compared to regular vegetable oil. Seed oil containing AcTAG can be used as biodiesel, plasticizers, and other alternatives to petroleum-based products. AcTAG can be synthesized in Camelina sativa by expressing key enzymes from Euonymus and by using RNA interference (RNAi) to suppress competing camelina biochemical pathways. Previous observations of high acetyl-TAG camelina lines have shown an increase in overall TAG molecules, but lower fatty acid levels compared to wild-type seeds. It is hypothesized the decrease in overall fatty acid content is due to a limited amount of glycerol-3-phosphate (G3P) backbone. To increase G3P, C. sativa seeds were transformed to overexpress the gene that encodes glycerol-3-phosphate dehydrogenase (GPD1), which converts dihydroxyacetone phosphate (DHAP) to G3P. By increasing G3P synthesis, the fatty acid content is expected to increase to wild-type content or higher. C. sativa seeds were collected from third-generation homozygous transgenic lines for lipid analysis. These lines were analyzed in three or more replicates to measure the amount of AcTAG, TAG, and overall fatty acid per seed. The resulting data is expected to show increased fatty acid content closer to wild-type seeds. Higher fatty acid content using acTAG and TAG molecules can be used to decrease the number of plants needed to produce C. sativa oils and save agricultural space for farmers.

    Plant triacylglycerols as feedstocks for the production of biofuels.

    Get PDF
    Summary Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel

    Spatial heterogeneity promotes coexistence of rock-paper-scissor metacommunities

    Full text link
    The rock-paper-scissor game -- which is characterized by three strategies R,P,S, satisfying the non-transitive relations S excludes P, P excludes R, and R excludes S -- serves as a simple prototype for studying more complex non-transitive systems. For well-mixed systems where interactions result in fitness reductions of the losers exceeding fitness gains of the winners, classical theory predicts that two strategies go extinct. The effects of spatial heterogeneity and dispersal rates on this outcome are analyzed using a general framework for evolutionary games in patchy landscapes. The analysis reveals that coexistence is determined by the rates at which dominant strategies invade a landscape occupied by the subordinate strategy (e.g. rock invades a landscape occupied by scissors) and the rates at which subordinate strategies get excluded in a landscape occupied by the dominant strategy (e.g. scissor gets excluded in a landscape occupied by rock). These invasion and exclusion rates correspond to eigenvalues of the linearized dynamics near single strategy equilibria. Coexistence occurs when the product of the invasion rates exceeds the product of the exclusion rates. Provided there is sufficient spatial variation in payoffs, the analysis identifies a critical dispersal rate d∗d^* required for regional persistence. For dispersal rates below d∗d^*, the product of the invasion rates exceed the product of the exclusion rates and the rock-paper-scissor metacommunities persist regionally despite being extinction prone locally. For dispersal rates above d∗d^*, the product of the exclusion rates exceed the product of the invasion rates and the strategies are extinction prone. These results highlight the delicate interplay between spatial heterogeneity and dispersal in mediating long-term outcomes for evolutionary games.Comment: 31pages, 5 figure

    Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids

    Get PDF
    The ability to manipulate expression of key biosynthetic enzymes has allowed the development of genetically modified plants that synthesise unusual lipids that are useful for biofuel and industrial applications. By taking advantage of the unique activities of enzymes from different species, tailored lipids with a targeted structure can be conceived. In this study we demonstrate the successful implementation of such an approach by metabolically engineering the oilseed crop Camelina sativa to produce 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) with medium-chain fatty acids (MCFAs). Different transgenic camelina lines that had been genetically modified to produce MCFAs through the expression of MCFA-specific thioesterases and acyltransferases were retransformed with the Euonymus alatus gene for diacylglycerol acetyltransferase (EaDAcT) that synthesises acetyl-TAGs. Concomitant RNAi suppression of acyl-CoA:diacylglycerol acyltransferase increased the levels of acetyl-TAG, with up to 77 mole percent in the best lines. However, the total oil content was reduced. Analysis of the composition of the acetyl-TAG molecular species using electrospray ionisation mass spectrometry demonstrated the successful synthesis of acetyl-TAG containing MCFAs. Field growth of high-yielding plants generated enough oil for quantification of viscosity. As part of an ongoing design–test–learn cycle, these results, which include not only the synthesis of ‘designer’ lipids but also their functional analysis, will lead to the future production of such molecules tailored for specific applications

    Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose

    Get PDF
    Citation: Tran, T. N. T., Breuer, R. J., Narasimhan, R. A., Parreiras, L. S., Zhang, Y. P., Sato, T. K., & Durrett, T. P. (2017). Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose. Biotechnology for Biofuels, 10, 12. doi:10.1186/s13068-017-0751-yBackground: Acetyl-triacylglycerols (acetyl-TAGs) are unusual triacylglycerol (TAG) molecules that contain an sn-3 acetate group. Compared to typical triacylglycerol molecules (here referred to as long chain TAGs; lcTAGs), acetyl-TAGs possess reduced viscosity and improved cold temperature properties, which may allow direct use as a drop-in diesel fuel. Their different chemical and physical properties also make acetyl-TAGs useful for other applications such as lubricants and plasticizers. Acetyl-TAGs can be synthesized by EaDAcT, a diacylglycerol acetyltransferase enzyme originally isolated from Euonymus alatus (Burning Bush). The heterologous expression of EaDAcT in different organisms, including Saccharomyces cerevisiae, resulted in the accumulation of acetyl-TAGs in storage lipids. Microbial conversion of lignocellulose into acetyl-TAGs could allow biorefinery production of versatile molecules for biofuel and bioproducts. Results: In order to produce acetyl-TAGs from abundant lignocellulose feedstocks, we expressed EaDAcT in S. cerevisiae previously engineered to utilize xylose as a carbon source. The resulting strains were capable of producing acetyl-TAGs when grown on different media. The highest levels of acetyl-TAG production were observed with growth on synthetic lab media containing glucose or xylose. Importantly, acetyl-TAGs were also synthesized by this strain in ammonia fiber expansion (AFEX)-pretreated corn stover hydrolysate (ACSH) at higher volumetric titers than previously published strains. The deletion of the four endogenous enzymes known to contribute to lcTAG production increased the proportion of acetyl-TAGs in the total storage lipids beyond that in existing strains, which will make purification of these useful lipids easier. Surprisingly, the strains containing the four deletions were still capable of synthesizing lcTAG, suggesting that the particular strain used in this study possesses additional undetermined diacylglycerol acyltransferase activity. Additionally, the carbon source used for growth influenced the accumulation of these residual lcTAGs, with higher levels in strains cultured on xylose containing media. Conclusion: Our results demonstrate that S. cerevisiae can be metabolically engineered to produce acetyl-TAGs when grown on different carbon sources, including hydrolysate derived from lignocellulose. Deletion of four endogenous acyltransferases enabled a higher purity of acetyl-TAGs to be achieved, but lcTAGs were still synthesized. Longer incubation times also decreased the levels of acetyl-TAGs produced. Therefore, additional work is needed to further manipulate acetyl-TAG production in this strain of S. cerevisiae, including the identification of other TAG biosynthetic and lipolytic enzymes and a better understanding of the regulation of the synthesis and degradation of storage lipids

    Generating Pennycress (Thlaspi arvense) Seed Triacylglycerols and Acetyl-Triacylglycerols Containing Medium-Chain Fatty Acids

    Get PDF
    Thlaspi arvense L. (pennycress) is a cold-tolerant Brassicaceae that produces large amounts of seeds rich in triacylglycerols and protein, making it an attractive target for domestication into an offseason oilseed cash cover crop. Pennycress is easily genetically transformed, enabling synthetic biology approaches to tailor oil properties for specific biofuel and industrial applications. To test the feasibility in pennycress of producing TAGs and acetyl-TAGs rich in medium-chain fatty acids (MCFAs; C6–C14) for industrial, biojet fuel and improved biodiesel applications, we generated transgenic lines with seed-specific expression of unique acyltransferase (LPAT and diacylglycerol acyltransferase) genes and thioesterase (FatB) genes isolated from Cuphea viscosissima, Cuphea avigera var. pulcherrima, Cuphea hookeriana, Coco nucifera, and Umbellularia californica. Wild-type pennycress seed TAGs accumulate no fatty acids shorter than 16C and less than 5 mol percent C16 as palmitic acid (16:0). Co-expressing UcFatB and CnLPAT produced up to 17 mol% accumulation of lauric acid (12:0) in seed TAGs, whereas CvFatB1 CvLPAT2 CpDGAT1 combinatorial expression produced up to 27 mol% medium chain FAs Medium Chain Fatty Acids mostly in the form of capric acid (10:0). CpFatB2 ChFatB2 combinatorial expression predominantly produced, in equal parts, up to 28 mol% myristic acid (14:0) and palmitic acid. Genetically crossing the combinatorial constructs into a fatty acid elongation1 (fae1) mutant that produced no 22:1 erucic acid, and with an Euonymus alatus diacylglycerol acetyltransferase (EaDAcT)-expressing line that produced 60 mol% acetyl-TAGs, had no or relatively minor effects on MCFAs accumulation, suggesting fluxes to MCFAs were largely unaltered. Seed germination assays revealed no or minor delays in seed germination for most lines, the exception being CpFatB2 ChFatB2-expressing lines, which had substantially slower seed germination rates. Taken together, these data show that pennycress can be engineered to produce seeds accumulating modest amounts of MCFAs of varying carbon-chain length in TAGs and acetyl-TAGs, with rates of seed germination being delayed in only some cases. We hypothesize that increasing MCFAs further may require functional reductions to endogenous transferases and/or other FA elongases

    Molecular tools enabling pennycress (\u3ci\u3eThlaspi arvense\u3c/i\u3e) as a model plant and oilseed cash cover crop

    Get PDF
    Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly model system akin to Arabidopsis that is well-suited for both laboratory and field experimentation. We sequenced the diploid genome of the spring-type Spring 32-10 inbred line (1C DNA content of 539 Mb; 2n = 14), identifying variation that may explain phenotypic differences with winter-type pennycress, as well as predominantly a one-to-one correspondence with Arabidopsis genes, which makes translational research straightforward. We developed an Agrobacterium-mediated floral dip transformation method (0.5% transformation efficiency) and introduced CRISPR-Cas9 constructs to produce indel mutations in the putative FATTY ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and creating an edible seed oil comparable to that of canola. We also stably transformed pennycress with the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene, producing low-viscosity acetyltriacylglycerol- containing seed oil suitable as a diesel-engine drop-in fuel. Adoption of pennycress as a model system will accelerate oilseed-crop translational research and facilitate pennycress’ rapid domestication to meet the growing sustainable food and fuel demands
    corecore