168 research outputs found

    Photometry Using Kepler ”superstamps” of Open Clusters NGC 6791 & NGC 6819

    Get PDF
    The Kepler space telescope has proven to be a gold mine for the study of variable stars. Usually, Kepler only reads out a handful of pixels around each pre-selected target star, omitting a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also read out larger superstamps which contained complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters that were not originally on Kepler\u27s target list. We discuss our work on using two photometric techniques to analyze these superstamps and present sample results from this project to demonstrate the value of this technique for a wide variety of variable stars

    High Energy Cosmic Rays from Local GRBs

    Full text link
    We have developed a model that explains cosmic rays with energies E between \~0.3 PeV and the energy of the second knee at E_2 ~ 3*10^{17} eV as originating from a recent Galactic gamma-ray burst (GRB) that occurred ~1 Myr ago within 1 kpc from Earth. Relativistic shocks from GRBs are assumed to inject power-law distributions of cosmic rays (CRs) to the highest energies. Diffusive propagation of CRs from the local GRB explains the CR spectrum near and above the first knee at E_1 ~ 3*10^{15} eV. The first and the second knees are explained as being directly connected with the injection of plasma turbulence in the interstellar medium on a ~1 pc and ~100 pc scales, respectively. Transition to CRs from extragalactic GRBs occurs at E > E_2. The origin of the ankle in the CR spectrum at E ~ 4*10^{18} eV is due to photopair energy losses of UHECRs on cosmological timescales, as also suggested by Berezinsky and collaborators. Any significant excess flux of extremely high energy CRs deviating from the exponential cutoff behavior at E> E_{GZK} = 6*10^{19} eV would imply a significant contribution due to recent GRB activity on timescales t < 10^8 yrs from local extragalactic sources within ~10 Mpc.Comment: 10 pages, 5 figures; to appear in the Proceedings of the Aspen2005 Workshop ``Physics at the End of the Galactic Cosmic Ray Spectrum'' (Aspen, April 2005

    Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073

    Get PDF
    An investigation of the 200 × 200 pixel 'superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V=14.22), is a particularly interesting variable Ap star that we discovered in the NGC 6791 superstamp. With a rotational period of 14.67 days and 0.034-mag variability, it has one of the largest peak-to-peak variations of any known Ap star. Colour photometry reveals an anti-phase correlation between the B band, and the V, R and I bands. This Ap star is a rotational variable, also known as an α2 CVn, star, and is one of only a handful of Ap stars observed by Kepler. While no change in spot period or amplitude is observed within the 4-year Kepler timeseries, the amplitude shows a large increase compared to ground-based photometry obtained two decades ago

    The mouse deafness locus (dn) is associated with an inversion on chromosome 19

    Get PDF
    Recombination data for the mouse deafness locus (dn) on chromosome 19 are consistent with the presence of an inversion for which one of the breakpoints is between D19Mit14 and D19Mit96, a distance of less than 226 kb. Fluorescence in situ hybridization studies using a bacterial artificial chromosome on interphase (G1) nuclei provide additional support for the presence of an inversion. The dn gene is probably the orthologue of the human DFNB7/DFNB11 gene on chromosome 9. Copyright (C) 1998 Elsevier Science B.V

    Genetic sensitivity to the caregiving context: The influence of 5httlpr and BDNF val66met on indiscriminate social behavior ☆ , ☆☆

    Get PDF
    Evidence that gene × environment interactions can reflect differential sensitivity to the environmental context, rather than risk or resilience, is increasing. To test this model, we examined the genetic contribution to indiscriminate social behavior, in the setting of a randomized controlled trial of foster care compared to institutional rearing. Children enrolled in the Bucharest Early Intervention Project (BEIP) were assessed comprehensively before the age of 30 months and subsequently randomized to either care as usual (CAUG) or high quality foster care (FCG). Indiscriminate social behavior was assessed at four time points, baseline, 30 months, 42 months and 54 months of age, using caregiver report with the Disturbances of Attachment Interview (DAI). General linear mixed-effects models were used to examine the effect of the interaction between group status and functional polymorphisms in Brain Derived Neurotrophic Factor (BDNF) and the Serotonin Transporter (5htt) on levels of indiscriminate behavior over time. Differential susceptibility, relative to levels of indiscriminate behavior, was demonstrated in children with either the s/s 5httlpr genotype or met 66 BDNF allele carriers. Specifically children with either the s/s 5httlpr genotype or met66 carriers in BDNF demonstrated the lowest levels of indiscriminate behavior in the FCG and the highest levels in the CAUG. Children with either the long allele of the 5httlpr or val/val genotype of BDNF demonstrated little difference in levels of indiscriminate behaviors over time and no group × genotype interaction. Children with both plasticity genotypes had the most signs of indiscriminate behavior at 54 months if they were randomized to the CAUG in the institution, while those with both plasticity genotypes randomized to the FCG intervention had the fewest signs at 54 months. Strikingly children with no plasticity alleles demonstrated no intervention effect on levels of indiscriminate behavior at 54 months. These findings represent the first genetic associations reported with indiscriminate social behavior, replicate previous gene × gene × environment findings with these polymorphisms, and add to the growing body of literature supporting a differential susceptibility model of gene × environment interactions in developmental psychopathology

    High-Energy Cosmic Rays from Gamma-Ray Bursts

    Full text link
    A model is proposed for the origin of cosmic rays (CRs) from ~10^14 eV to the highest energies, >10^20 eV. Gamma-Ray Bursts (GRBs) are assumed to inject CR protons and ions into the interstellar medium of star-forming galaxies--including the Milky Way--with a power law spectrum extending to a maximum energy ~10^20 eV. The CR spectrum near the knee is fit with CRs trapped in the Galactic halo that were accelerated and injected by an earlier Galactic GRB. These CRs diffuse in the disk and halo of the Galaxy due to gyroresonant pitch-angle scattering with MHD turbulence in the Galaxy's magnetic field. The preliminary (2001) KASCADE data through the knee of the CR spectrum are fit by a model with energy-dependent propagation of CR ions from a single Galactic GRB. Ultra-high energy CRs (UHECRs), with energies above the ankle are assumed to propagate rectilinearly with their spectrum modified by photo-pion, photo-pair, and expansion losses. We fit the measured UHECR spectrum assuming comoving luminosity densities of GRB sources consitent with possible star formation rate histories of the universe. For power-law CR proton injection p>2 this model implies that the nonthermal content in the GRB blast waves is hadronically dominated by a factor ~60-200. Calculations show that 100 TeV-100 PeV neutrinos could be detected several times per year from all GRBs in kilometer-scale neutrino detectors such as IceCube, for GRB blast-wave Doppler factors <~200. GLAST measurements of gamma-ray components and cutoffs will constrain the product of nonthermal baryon loading and radiative efficiency, limit the Doppler factor, and test this senario.Comment: 43 pages, 21 figures, to appear in Astropart. Phy

    Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii

    Get PDF
    Mosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vector populations, and countries with a high malaria burden face a daunting challenge to sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a project to build an open resource of high-quality data on genome variation among natural populations of the major African malaria vector species Anopheles gambiae and Anopheles coluzzii. We analyzed whole genomes of 1142 individual mosquitoes sampled from the wild in 13 African countries, as well as a further 234 individuals comprising parents and progeny of 11 laboratory crosses. The data resource includes high-confidence single-nucleotide polymorphism (SNP) calls at 57 million variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We use these data to analyze genetic population structure and characterize genetic diversity within and between populations. We illustrate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation for developing new operational systems for molecular surveillance and for accelerating research and development of new vector control tools. It also provides a unique resource for the study of population genomics and evolutionary biology in eukaryotic species with high levels of genetic diversity under strong anthropogenic evolutionary pressures
    corecore