396 research outputs found

    A ship-based methodology for high precision atmospheric oxygen measurements and its application in the Southern Ocean region

    Get PDF
    A method for achieving continuous high precision measurements of atmospheric O-2 is presented based on a commercially available fuel-cell instrument, (Sable Systems, Oxzilla FC-II) with a precision of 7 per meg (approximately equivalent to 1.2 ppm) for a 6-min measurement. The Oxzilla was deployed on two voyages in the Western Pacific sector of the Southern Ocean, in February 2003 and in April 2004, making these the second set of continuous O-2 measurements ever made from a ship. The results show significant temporal variation in O-2, in the order of +/- 10 per meg over 6-hourly time intervals, and substantial spatial variation. Data from both voyages show an O-2 maximum centred on 50 degrees S, which is most likely to be the result of biologically driven O-2 outgassing in the region of subtropical convergence around New Zealand, and a decreasing O-2 trend towards Antarctica. O-2 from the ship-based measurements is elevated compared with measurements from the Scripps Institution of Oceanography flask-sampling network, and the O-2 maximum is also not captured in the network observations. This preliminary study shows that ship-based continuous measurements are a valuable addition to current fixed site sampling programmes for the understanding of ocean-atmosphere O-2 exchange processes. [References: 39

    Towards an Appropriation Infrastructure: Supporting User Creativity in IT Adoption

    Get PDF
    Research on the adoption of information systems (IS) often stated technology as a fixed entity. Following the ’practical turn’ in IS we argue that information technology artefacts are mainly ’cultural artefacts’, which are shaped in a social process of appropriation where software usage is accompanied by processes of interpretation, negotiation or change in organizations. We elaborate on a (neo-)Marxian interpretation of appropriation from a design-oriented perspective in order to investigate the possibilities of technological support of activities of appropriation work. To capture the different facets of appropriation, we combine theoretical concepts of social capital and activity-based learning. With the help of this theoretical orientation, we systemize empirical evidence from several research projects in order to detect recurring patterns. We use these patterns to develop a generic architecture for actively supporting the social activity of appropriating the cultural artefact in context of its usage

    Determination of a correction factor for the interaction potential of He + ions backscattered from a Cu(1 0 0) surface

    Get PDF
    Abstract We have used coaxial impact collision ion scattering spectroscopy (CAICISS) data collected from 3 keV He + ions backscattered from a Cu(1 0 0) surface in different azimuthal orientations to investigate the influence of the screening length on CAICISS polar angle scans. We have compared the experimental data to computer simulations generated with the FAN code and found that for our experimental conditions an exceptionally low value of 0.53 was required for the correction factor to the Firsov screening length used with the ThomasFermi-Moliere potential. In addition we found that the Ziegler-Biersack-Littmark potential is not applicable, resulting in incorrect peak positions in the CAICISS polar angle plots

    Initial growth of platinum on oxygen-covered Ni(1 1 0) surfaces

    Get PDF
    Abstract The initial growth of Pt on the Ni(1 1 0)-(3 · 1)-O and NiO(1 1 0) surfaces has been studied by coaxial impact collision ion scattering spectroscopy (CAICISS), low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). Prior to Pt deposition, the atomic structure of the near-surface regions of the Ni(1 1 0)-(3 · 1)-O and NiO(1 1 0) structures were studied using CAICISS, finding changes to the interlayer spacings due to the adsorption of oxygen. Deposition of Pt on the Ni(1 1 0)-(3 · 1)-O surface led to a random substitutional alloy in the near-surface region at Pt coverages both below and in excess of 1 ML. In contrast, when the surface was treated with 1800 L of atomic oxygen in order to form a NiO(1 1 0) surface, a thin Pt layer was formed upon room temperature Pt deposition. XPS and LEED data are presented throughout to support the CAICISS observations

    The BAS speech data repository

    Get PDF

    Synoptic-scale controls on the δ18O in precipitation across Beringia

    Get PDF
    Oxygen isotope records of precipitation (δ18Oprecip) from Beringia are thought to reflect synoptic-scale circulation changes associated with the Aleutian Low. To delineate the spatial pattern of δ18Oprecip associated with the two dominant modes of Aleutian Low circulation, we combine modern δ18Oprecip and deuterium excess data with climate reanalysis and back-trajectory modelling. Aleutian Low strength and position are revealed to systematically affect regional moisture source and δ18Oprecip; whereby a strengthened Aleutian Low causes lower (higher) δ18Oprecip in western (eastern) Beringia. We compare a new 100-year-long δ18O record from the Aleutian Islands with the North Pacific Index, the primary indicator of Aleutian Low strength, and find a significant positive relationship (r = 0.43, p < 0.02, n = 28) that tracks late 20th century change. This study demonstrates synoptic-scale circulation controls on our isotope record, and provides a coherent framework for interpreting existing and emerging paleo-isotope data from the region

    BAS Speech Science Web Services - an Update of Current Developments

    Get PDF

    Large emissions from floodplain trees close the Amazon methane budget

    Get PDF
    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources

    Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O2 from a 300-m tall tower in central Siberia

    Get PDF
    We present first results from 19 months of semicontinuous concentration measurements of biogeochemical trace gases (CO2, CO, and CH4) and O2, measured at the Zotino Tall Tower Observatory (ZOTTO) in the boreal forest of central Siberia. We estimated CO2 and O2 seasonal cycle amplitudes of 26.6 ppm and 134 per meg, respectively. An observed west-east gradient of about -7 ppm (in July 2006) between Shetland Islands, Scotland, and ZOTTO reflects summertime continental uptake of CO2 and is consistent with regional modeling studies. We found the oceanic component of the O2 seasonal amplitude (Atmospheric Potential Oxygen, or APO) to be 51 per meg, significantly smaller than the 95 per meg observed at Shetlands, illustrating a strong attenuation of the oceanic O2 signal in the continental interior. Comparison with the Tracer Model 3 (TM3) atmospheric transport model showed good agreement with the observed phasing and seasonal amplitude in CO2; however, the model exhibited greater O2 (43 per meg, 32%) and smaller APO (9 per meg, 18%) amplitudes. This seeming inconsistency in model comparisons between O2 and APO appears to be the result of phasing differences in land and ocean signals observed at ZOTTO, where ocean signals have a significant lag. In the first 2 months of measurements on the fully constructed tower (November and December 2006), we observed several events with clear vertical concentration gradients in all measured species except CO. During “cold events” (below -30°C) in November 2006, we observed large vertical gradients in CO2 (up to 22 ppm), suggesting a strong local source. The same pattern was observed in CH4 concentrations for the same events. Diurnal vertical CO2 gradients in April to May 2007 gave estimates for average nighttime respiration fluxes of 0.04 ± 0.02 mol C m-2 d-1, consistent with earlier eddy covariance measurements in 1999–2000 in the vicinity of the tower
    corecore