374 research outputs found

    A System Appallingly out of Balance : Morgan v. State and the Rights of Defendants and Victims in Sexual Assault Prosecutions

    Get PDF
    In a series of three cases that culminate with Morgan v. State, Alaska\u27s courts established a unique protection for defendants in sexual assault cases. This protection, which allows such defendants to attack their victims in court with previous reports of sexual assault that did not result in prosecution, is not afforded to defendants in other cases and is based on a dubious general principle that the credibility of sexual assault victims has special relevance. The protection is problematic in several ways: it is grounded in erroneous stereotypes about the victims of sex crimes; it is detrimental to victims and the pursuit of truth; it is inconsistent with traditional rules of evidence; and it is unnecessary to protect the rights of defendants. For these reasons, this protection for defendants in sexual assault cases should be abrogated by legislative action as proposed herein

    Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment.

    Get PDF
    Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention

    Accelerating Self-Assembly of Crisscross Slat Systems

    Get PDF
    We present an abstract model of self-assembly of systems composed of "crisscross slats", which have been experimentally implemented as a single-stranded piece of DNA [Minev et al., 2021] or as a complete DNA origami structure [Wintersinger et al., 2022]. We then introduce a more physically realistic "kinetic" model and show how important constants in the model were derived and tuned, and compare simulation-based results to experimental results [Minev et al., 2021; Wintersinger et al., 2022]. Using these models, we show how we can apply optimizations to designs of slat systems in order to lower the numbers of unique slat types required to build target structures. In general, we apply two types of techniques to achieve greatly reduced numbers of slat types. Similar to the experimental work implementing DNA origami-based slats, in our designs the slats oriented in horizontal and vertical directions are each restricted to their own plane and sets of them overlap each other in square regions which we refer to as macrotiles. Our first technique extends their previous work of reusing slat types within macrotiles and requires analyses of binding domain patterns to determine the potential for errors consisting of incorrect slat types attaching at undesired translations and reflections. The second technique leverages the power of algorithmic self-assembly to efficiently reuse entire macrotiles which self-assemble in patterns following designed algorithms that dictate the dimensions and patterns of growth. Using these designs, we demonstrate that in kinetic simulations the systems with reduced numbers of slat types self-assemble more quickly than those with greater numbers. This provides evidence that such optimizations will also result in greater assembly speeds in experimental systems. Furthermore, the reduced numbers of slat types required have the potential to vastly reduce the cost and number of lab steps for crisscross assembly experiments

    Effect of strain and variable mass on the formation of antibonding hole ground states in InAs quantum dot molecules

    Get PDF
    Using four-band k·p Hamiltonians, we study how biaxial strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. The reduced spin-orbit interaction in the GaAs matrix, which we account for using position-dependent Luttinger parameters, has the opposite effect. This compensation results in the critical distance being little affected. The possibility to induce the bonding-to-antibonding transition using longitudinal magnetic fields is also investigated. Luttinger- Kohn Hamiltonian predicts a magnetic enhancement of the heavy hole-light hole coupling which, in turn, leads to such transition. No such effect is, however, observed in magnetophotoluminescence experiments. An alter- native implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental behavior

    Spin Reduction Transition in Spin-3/2 Random Heisenberg Chains

    Get PDF
    Random spin-3/2 antiferromagnetic Heisenberg chains are investigated using an asymptotically exact renormalization group. Randomness is found to induce a quantum phase transition between two random-singlet phases. In the strong randomness phase the effective spins at low energies are S_eff=3/2, while in the weak randomness phase the effective spins are S_eff=1/2. Separating them is a quantum critical point near which there is a non-trivial mixture of S=1/2, S=1, and S=3/2 effective spins at low temperatures.Comment: 4 pages, 3 figures. Typos correcte

    Chemical differentiation in regions of high-mass star formation I. CS, dust and N2H^+ in southern sources

    Get PDF
    Aims. Our goals are to compare the CS, N2H+ and dust distributions in a representative sample of high-mass star forming dense cores and to determine the physical and chemical properties of these cores. Methods. We compare the results of CS(5-4) and 1.2 mm continuum mapping of twelve dense cores from the southern hemisphere presented in this work, in combination with our previous N2H+(1-0) and CS(2-1) data. We use numerical modeling of molecular excitation to estimate physical parameters of the cores. Results. Most of the maps have several emission peaks (clumps). We derive basic physical parameters of the clumps and estimate CS and N2H+ abundances. Masses calculated from LVG densities are higher than CS virial masses and masses derived from continuum data, implying small-scale clumpiness of the cores. For most of the objects, the CS and continuum peaks are close to the IRAS point source positions. The CS(5-4) intensities correlate with continuum fluxes per beam in all cases, but only in five cases with the N2H+(1-0) intensities. The study of spatial variations of molecular integrated intensity ratios to continuum fluxes reveals that I(N2H+)/F{1.2} ratios drop towards the CS peaks for most of the sources, which can be due to a N2H+ abundance decrease. For CS(5-4), the I(CS)/F{1.2} ratios show no clear trends with distance from the CS peaks, while for CS(2-1) such ratios drop towards these peaks. Possible explanations of these results are considered. The analysis of normalized velocity differences between CS and N2H+ lines has not revealed indications of systematic motions towards CS peaks.Comment: 13 pages, 5 figures, accepted by Astronomy and Astrophysic

    A historiometric analysis of leadership in mission critical multiteam environments

    Get PDF
    a r t i c l e i n f o a b s t r a c t Perhaps nowhere are leaders more pivotal than in the extreme contexts of responding to the aftermath of natural disasters or orchestrating post-war stability, support, transition, and reconstruction efforts. In the current study, historiometric methods were employed in order to elucidate the aspects of leadership essential in these extreme contexts. These contexts were chosen for two reasons: (1) they capture the external networking required of many complex organizational tasks and (2) they are mission critical -the outcomes of leadership in these contexts are of great importance. One hundred and ten critical incidents were written describing instances of effective and ineffective interaction within these systems, and 55 of them were classified as primarily describing leadership issues. Critical incidents were then sorted, translated, and retranslated in order to inductively derive a set of leader functions essential for orchestrating effort in mission critical multiteam contexts

    Optical control of one and two hole spins in interacting quantum dots

    Full text link
    A single hole spin in a semiconductor quantum dot has emerged as a quantum bit that is potentially superior to an electron spin. A key feature of holes is that they have a greatly reduced hyperfine interaction with nuclear spins, which is one of the biggest difficulties in working with an electron spin. It is now essential to show that holes are viable for quantum information processing by demonstrating fast quantum gates and scalability. To this end we have developed InAs/GaAs quantum dots coupled through coherent tunneling and charged with controlled numbers of holes. We report fast, single qubit gates using a sequence of short laser pulses. We then take the important next step toward scalability of quantum information by optically controlling two interacting hole spins in separate dots.Comment: 5 figure
    • …
    corecore