41 research outputs found
Spin-orbit coupling and chaotic rotation for circumbinary bodies: application to the small satellites of the Pluto-Charon system
We investigate the resonant rotation of circumbinary bodies in planar quasi-circular orbits. Denoting n(b) and n the orbital mean motion of the inner binary and of the circumbinary body, respectively, we show that spin-orbit resonances exist at the frequencies n +/- kv/2, where v = n(b) - n, and k is an integer. Moreover, when the libration at natural frequency has the same magnitude as v, the resonances overlap and the rotation becomes chaotic. We apply these results to the small satellites in the Pluto-Charon system, and conclude that their rotations are likely chaotic. However, the rotation can also be stable and not synchronous for small axial asymmetries
A pre-Caloris synchronous rotation for Mercury
The planet Mercury is locked in a spin-orbit resonance where it rotates three
times about its spin axis for every two orbits about the Sun. The current
explanation for this unique state assumes that the initial rotation of this
planet was prograde and rapid, and that tidal torques decelerated the planetary
spin to this resonance. When core-mantle boundary friction is accounted for,
capture into the 3/2 resonance occurs with a 26% probability, but the most
probable outcome is capture into one of the higher-order resonances. Here we
show that if the initial rotation of Mercury were retrograde, this planet would
be captured into synchronous rotation with a 68% probability. Strong spatial
variations of the impact cratering rate would have existed at this time, and
these are shown to be consistent with the distribution of pre-Calorian impact
basins observed by Mariner 10 and MESSENGER. Escape from this highly stable
resonance is made possible by the momentum imparted by large basin-forming
impact events, and capture into the 3/2 resonance occurs subsequently under
favourable conditions.Comment: Nature Geosci., 201
Hi-sAFe: a 3D agroforestry model for integrating dynamic tree–crop interactions
Agroforestry, the intentional integration of trees with crops and/or livestock, can lead to multiple economic and ecological benefits compared to trees and crops/livestock grown separately. Field experimentation has been the primary approach to understanding the tree–crop interactions inherent in agroforestry. However, the number of field experiments has been limited by slow tree maturation and difficulty in obtaining consistent funding. Models have the potential to overcome these hurdles and rapidly advance understanding of agroforestry systems. Hi-sAFe is a mechanistic, biophysical model designed to explore the interactions within agroforestry systems that mix trees with crops. The model couples the pre-existing STICS crop model to a new tree model that includes several plasticity mechanisms responsive to tree–tree and tree–crop competition for light, water, and nitrogen. Monoculture crop and tree systems can also be simulated, enabling calculation of the land equivalent ratio. The model’s 3D and spatially explicit form is key for accurately representing many competition and facilitation processes. Hi-sAFe is a novel tool for exploring agroforestry designs (e.g., tree spacing, crop type, tree row orientation), management strategies (e.g., thinning, branch pruning, root pruning, fertilization, irrigation), and responses to environmental variation (e.g., latitude, climate change, soil depth, soil structure and fertility, fluctuating water table). By improving our understanding of the complex interactions within agroforestry systems, Hi-sAFe can ultimately facilitate adoption of agroforestry as a sustainable land-use practice
Functional-structural modelling using the generic tool PIAF-A : a simulation example on young walnut
absen
VegeSTAR v.3.1. A software to compute light interception and photosynthesis by 3D plant mock-ups
UMR PIAF INRA-UBP 234 Avenue du Brézet 63039 Clermont-Ferrand (FRA) Diffusion du document : UMR PIAF INRA-UBP 234 Avenue du Brézet 63039 Clermont-Ferrand (FRA)absen