138 research outputs found

    Continuous laser hardening with induction pre-heating

    Full text link
    A novel way of continuous surface hardening of steel bodies by a laser beam is modeled. This heat treatment is supplemented with pre-heating of the hardened parts by a classic inductor in order to reduce the temperature gradients and subsequent mechanical stresses in the processed material. The mathematical model of the process is solved numerically in 3D and the solution respects all important nonlinearities (a saturation curve of the hardened steel and temperature dependences of its physical properties). The methodology is illustrated with a typical example, whose results are presented and discussed

    Computation of forces in strongly nonlinear magnetic fields using higher-order eggshell algorithm

    Full text link
    A novel version of the eggshell-based procedure for numerical computation of magnetic forces and torques acting on ferromagnetic bodies in highly nonlinear magnetic fields is presented. The procedure works with a fully adaptive higher-order finite element method developed for years in our research group, that is implemented in own code Agros2D and library Hermes. The power of the methodology and both codes is demonstrated on the solution of two typical examples: computation of the static characteristic of a magnetic actuator and torque characteristic of a flux-switched permanent-magnet machine. The results obtained are compared with data calculated by several other available codes

    Gravity on de-Sitter 3-Brane, Induced Einstein-Hilbert Term and Massless Gravitons

    Full text link
    We study the extensions of DGP model which are described by five-dimensional Einstein gravity coupled covariantly to 3-brane with induced gravity term and consider warped D=4 de Sitter background field solutions on the brane. The case with included D=5 AdS cosmological term is also considered. Following background field method we obtain the field equations described by the Lagrangean terms bilinear in gravitational field. In such a linear field approximation on curved dS background we calculate explicitly the five-dimensional massive terms as well as the mass-like ones on the brane. We investigate the eigenvalue problem of Schr\"{o}dinger-like equation in fifth dimension for graviton masses and discuss the existence of massless as well as massive graviton modes in the bulk and on the brane without and with induced gravity.Comment: LaTeX 26 pages, the version which appears in Class. Quant. Gra

    A lineage-specific Exo70 is required for receptor kinase-mediated immunity in barley

    Get PDF
    In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity but lack causal association. Here, we show that Rps8-mediated resistance in barley to the pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: Pur1 and Exo70FX12, which are together necessary and sufficient. Pur1 encodes a leucine-rich repeat receptor kinase and is the ortho-log of rice Xa21, and Exo70FX12 belongs to the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Pur1-mediated immunity and sug-gest that the Exo70FX clade may have evolved a specialized role in receptor kinase signalin

    Common and Distinct Roles of Juvenile Hormone Signaling Genes in Metamorphosis of Holometabolous and Hemimetabolous Insects

    Get PDF
    Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate KrĆ¼ppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis

    Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis

    Get PDF
    Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model.). are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse

    Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers

    Get PDF
    Background and Aims The production of triploid banana and plantain (Musa spp.) cultivars with improved characteristics (e.g. greater disease resistance or higher yield), while still preserving the main features of current popular cultivars (e.g. taste and cooking quality), remains a major challenge for Musa breeders. In this regard, breeders require a sound knowledge of the lineage of the current sterile triploid cultivars, to select diploid parents that are able to transmit desirable traits, together with a breeding strategy ensuring final triploidization and sterility. Highly polymorphic single sequence repeats (SSRs) are valuable markers for investigating phylogenetic relationships. Methods Here, the allelic distribution of each of 22 SSR loci across 561 Musa accessions is analysed. Key Results and ConclusionsWe determine the closest diploid progenitors of the triploid 'Cavendish' and 'Gros Michel' subgroups, valuable information for breeding programmes. Nevertheless, in establishing the likely monoclonal origin of the main edible triploid banana subgroups (i.e. 'Cavendish', 'Plantain' and 'Mutika- Lujugira'), we postulated that the huge phenotypic diversity observed within these subgroups did not result from gamete recombination, but rather from epigenetic regulations. This emphasizes the need to investigate the regulatory mechanisms of genome expression on a unique model in the plant kingdom. We also propose experimental standards to compare additional and independent genotyping data for reference. (RƩsumƩ d'auteur
    • ā€¦
    corecore