39 research outputs found

    Comparison of major depression diagnostic classification probability using the SCID, CIDI, and MINI diagnostic interviews among women in pregnancy or postpartum: An individual participant data meta-analysis

    Get PDF
    Objectives A previous individual participant data meta-analysis (IPDMA) identified differences in major depression classification rates between different diagnostic interviews, controlling for depressive symptoms on the basis of the Patient Health Questionnaire-9. We aimed to determine whether similar results would be seen in a different population, using studies that administered the Edinburgh Postnatal Depression Scale (EPDS) in pregnancy or postpartum. Methods Data accrued for an EPDS diagnostic accuracy IPDMA were analysed. Binomial generalised linear mixed models were fit to compare depression classification odds for the Mini International Neuropsychiatric Interview (MINI), Composite International Diagnostic Interview (CIDI), and Structured Clinical Interview for DSM (SCID), controlling for EPDS scores and participant characteristics. Results Among fully structured interviews, the MINI (15 studies, 2,532 participants, 342 major depression cases) classified depression more often than the CIDI (3 studies, 2,948 participants, 194 major depression cases; adjusted odds ratio [aOR] = 3.72, 95% confidence interval [CI] [1.21, 11.43]). Compared with the semistructured SCID (28 studies, 7,403 participants, 1,027 major depression cases), odds with the CIDI (interaction aOR = 0.88, 95% CI [0.85, 0.92]) and MINI (interaction aOR = 0.95, 95% CI [0.92, 0.99]) increased less as EPDS scores increased. Conclusion Different interviews may not classify major depression equivalently

    Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface

    Get PDF
    On-surface polymerization is a promising technique to prepare organic functional nanomaterials that are challenging to synthesize in solution, but it is typically used on metal substrates, which play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, which generally causes rapid dewetting and desorption of the monomers. Here we report the photoinitiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide monomer on an insulating KCl surface. Polymer fibres up to 1 μm long are formed through chain-like rather than step-like growth. Interactions between potassium cations and the dimaleimide’s oxygen atoms facilitate the propagation of the polymer fibres along a preferred axis of the substrate over long distances. Density functional theory calculations, non-contact atomic force microscopy imaging and manipulations at room temperature were used to explore the initiation and propagation processes, as well as the structure and stability of the resulting one-dimensional polymer fibres

    Molecular trapping in two-dimensional chiral organic Kagomé nanoarchitectures composed of Baravelle spiral triangle enantiomers

    No full text
    International audienceThe supramolecular self-assembly of a push-pull dye is investigated using scanning tunneling microscopy (STM) at the liquid-solid interface. The molecule has an indandione head, a bithiophene backbone and a triphenylamine-bithiophene moiety functionalized with two carboxylic acid groups as a tail. The STM images show that the molecules adopt an "L" shape on the surface and form chiral Baravelle spiral triangular trimers at low solution concentrations. The assembly of these triangular chiral trimers on the graphite surface results in the formation of two types of chiral Kagomé nanoarchitectures. The Kagomé-α structure is composed of only one trimer enantiomer, whereas the Kagomé-β structure results from the arrangement of two trimer enantiomers in a 1:1 ratio. These Kagomé lattices are stabilized by intermolecular O-H···O hydrogen bonds between carboxylic acid groups. These observations reveal that the complex structure of the push-pull dye molecule leads to the formation of sophisticated two-dimensional chiral Kagomé nanoarchitectures. The subsequent deposition of coronene molecules leads to the disappearance of the Kagomé-β structure, whereas the Kagomé-α structure acts as the host template to trap the coronene molecules

    Are there sex differences in the neuropsychological profiles of patients with obsessive-compulsive disorder?

    No full text
    The purpose of this study was to examine whether men and women with obsessive-compulsive disorder (OCD) demonstrate differences in neuropsychological functioning compared to healthy men and women. Participants were 56 consecutive patients (33 male, 23 female) and 40 healthy control participants (20 male, 20 female) of comparable characteristics. Male and female patients had comparable symptom severity, illness duration, comorbidity, in- or out-patient status, and medication usage. An extensive neuropsychological test battery was administered including tests of general nonverbal intelligence, attention, verbal and nonverbal memory, and executive functions. Male and female OCD patients showed comparable neuropsychological performances on most cognitive domains. However, we found some evidence for cross-sex shifts in verbal fluency tasks (FAS and Category Alternation Test [CAT]), the reading component of the Stroop test, and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) Digit Span-Forward test. Post hoc analyses revealed that female patients showed reduced performance on these tests compared to healthy women, in the male-typical direction. Among OCD women only, there were significant negative correlations between OCD symptom severity and performance on the CAT and the reading Stroop. We conclude that sex does not seem to be a major determinant of neuropsychological function in OCD, but the observed cross-sex shifts on some tasks deserve further examination

    Incorporation dynamics of molecular guests into two-dimensional supramolecular host networks at the liquid–solid interface

    No full text
    The objective of this work is to study both the dynamics and mechanisms of guest incorporation into the pores of 2D supramolecular host networks at the liquid–solid interface. This was accomplished by adding molecular guests to prefabricated self-assembled porous monolayers and the simultaneous acquisition of scanning tunneling microscopy (STM) topographs. The incorporation of the same guest molecule (coronene) into two different host networks was compared, where the pores of the networks either featured a perfect geometric match with the guest (for trimesic acid host networks) or were substantially larger than the guest species (for benzenetribenzoic acid host networks). Even the moderate temporal resolution of standard STM experiments in combination with a novel injection system was sufficient to reveal clear differences in the incorporation dynamics in the two different host networks. Further experiments were aimed at identifying a possible solvent influence. The interpretation of the results is aided by molecular mechanics (MM) and molecular dynamics (MD) simulations
    corecore