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Abstract: 
On-surface polymerization is a promising technique to prepare organic functional nanomaterials 

that are challenging to synthesize in solution, but it is typically used on metal substrates, which 

play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-

assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, 

which causes rapid dewetting and desorption of the monomers. Here we report the photo-

initiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide 

monomer on an insulating KCl surface. Polymer fibres up to 1μm long are formed through 

chain-like rather than step-like growth. Interactions between potassium cations and the 

dimaleimide’s oxygen atoms facilitate propagation of the polymer fibres along a preferred axis of 

the substrate over long distances. Density functional theory calculations, noncontact atomic 

force microscopy imaging, and manipulation at room temperature were used to explore the 

initiation and propagation processes, as well as the structure and stability of the resulting 1D 

polymer fibres. 
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Main Text:  
On-surface polymerization of organic precursors provides new possibilities to form highly-stable 

and atomically-defined nanostructures that exhibit desired electronic, optical, catalytic etc. 

properties. Compared to standard chemistry using isotropic solution in a test tube, on-surface 

reactions are confined to two dimensions (2D). This spatial confinement of the reaction gives 

access to entirely new reaction pathways due to for example the stabilizing of specific 

intermediate species. Furthermore, the substrate for on-surface reactions can be chosen in 

order to control both a catalytic as well as a templating effect to guide the size, the shape, and 

the nature of the structures formed. As emphasized by the Nobel Prize in Physics in 2016,1, 2 

awarded for early work in understanding topological phase transitions and topological phases of 

matter, the formation of artificial matter exhibiting properties controlled by their symmetry is very 

promising in nanoelectronics.3, 4 This issue can be addressed by creating artificial 1D polymers 

with innovative properties, for example by polymerization of “exotic” polymorphs only accessible 

on insulating surfaces. The state of the art for on-surface synthesized, highly ordered 1D or 2D 

polymers are dimensions of about 100 nm.5, 6 For the basic building blocks of molecular circuitry 

to interconnect active devices, there is however a need to fabricate isolated nanowires with a 

length larger than 1 µm. This is still a challenge due to the fact that top-down approaches such 

as photolithography or etching fail to achieve the formation of isolated, long and mechanically 

stable nanowires. 

In the last years, special interest was given to on-surface reactions performed under ultra-high 

vacuum (UHV) conditions and on atomically clean single-crystal metal substrates. In this 

solvent-free environment, classical chemical reactions such as Ullmann type coupling,7, 8, 9, 10, 11, 

12 Glaser coupling,13, 14 imine formation,15 self-condensation of boronic acids,16,17,18 and many 

more (for overviews see refs.19, 20, 6, 21, 22, 23) have successfully been used to create well-defined 

and covalently bound organic 1D and 2D structures. Key factors for this success are first the 

confinement to 2D and the adsorption on a well-chosen surface that can favour both 

thermodynamic and kinetic progression of the polymerization process.24 Second, in UHV there 

is a much broader range of annealing temperatures possible. In fact, most of the reactions 

described so far are initiated by thermal annealing which however often creates defects in the 

formed structures due to the increased diffusion of the precursors on the surface. In order to 

circumvent this problem, some work was reported where the polymerization was initiated by UV-

illumination12, 25, 26, 27, 28 or current injection by means of an scanning tunnelling microscopy tip.7, 

29, 30, 31 The main limitations of the so far created structures in view of future applications in 

nanoscale electronic and optical devices are (i) the use of metal substrates (for instance, 

leading to non-radiative quenching32), (ii) the high number of defects in the formed covalent 

structures, and (iii) the side-products of some reactions which might remain on the substrate 

surface. 

(i) The limitations linked to the use of metal substrates with their catalytic effect 33, 34, 26 have 

been circumvented by applying on-surface reactions by thermal annealing on thin decoupling-

layers.35, 36, 37, 38 The attempts to use ultrathin spacer layers are encouraging, however, the 

initiation of the used reactions still needed the presence of the metal surface.35, 36 Furthermore, 

it was shown that for electronic devices with predominant lateral transport the spacer layers 

must have a thickness of at least 3-4 monolayers (ML)35 and when permanent charging of single 



molecules is desired, the layer must be even thicker.39 On bulk insulating substrates, successful 

polymerization was so far obtained on calcite40, 41, 42, 43, 44 and mica45 surfaces which have a high 

surface energy46 and provide a strong anchoring of the molecules to the substrates which allows 

for relatively large annealing temperatures (500K).42 UV-induced polymerization on bulk 

insulators was demonstrated for pre-arranged supramolecular structures for both 1D44 and 2D 

structures.42 

(ii) The so far largest, defect-free organic layers have been achieved by supramolecular self-

assembly (SA) in which the molecule-molecule (MM) interaction is dominated by relatively weak 

and reversible Van der Waals (VdW) or Hydrogen bonding. In such systems, the molecular 

layer can achieve its highly-ordered thermodynamic equilibrium, however, the technological 

application of weakly bound organic layers is very limited due to their poor thermal and chemical 

stability. Several attempts have been made to increase the structural order of covalent organic 

networks by either using supramolecular SA as intermediate step before covalent linking was 

initiated26, 34, 47, 48, 49, 50, 51 or by performing covalent linking under aqueous solution where the 

polymerization becomes reversible.52 

(iii) Side products of the polymer reaction can have two negative effects: namely surface 

poisoning by for example halogen atoms12 or residuals which sterically hinder the defect-free 

growth. These problems can either be circumvented by using side product-free reactions or by 

choosing reaction temperatures at which the side products desorb from the substrate surface.  

Here, we propose a technique that can overcome the three obstacles identified above by using 

a side product-free 1D polymerization on an alkali-halide surface. This concept is based on 

light-induced radical polymerization,53 which is a powerful method to obtain composite materials 

and polymers at the industrial scale, but which has only rarely been addressed on conducting 

surfaces54, 55, 56, 57, 58 and has never been transferred on the surface of bulk insulators so far, 

despite of its efficiency in the absence of any catalytic role of the surface. The highly ordered 

and long nanofibres are formed owing to: the fact that the UV-induced radical polymerization is 

chain-like, that it is guided by the molecule-substrate interaction, and that the reaction takes 

place in a diluted 2D gas phase acting as a reservoir of the precursor molecules that allows 

unhindered propagation, rather than through pre-arranged structures, as has previously been 

shown on insulating surfaces.40-44 In addition, photo-induced polymerization does not require 

thermal annealing (by opposition with catalytic on-surfaces reactions) which is a major 

advantage in order to avoid the formation of defects during the polymerisation. The conclusions 

on the polymerization process are supported by Density Functional Theory (DFT) and Climbing 

Image Nudged Elastic Band (NEB) calculations, and the structure and stability of the covalent 

micrometer-long organic fibres are verified experimentally by noncontact Atomic Force 

Microscopy (ncAFM). 

Results 
Aiming to form fibres that may find practical use in molecular devices, we looked to develop an 

efficient and robust synthesis method for well-oriented micrometre-long nanowires on the 

surface of bulk insulators. We chose the family of maleimide molecules since they are widely 



used in the synthesis of high performance macromolecular systems.59, 60 Furthermore, they can 

participate in polymerizations that occur through nucleophilic reactions, cycloaddition and 

radical polymerization. 61 , 62  Different from step-growth polymerization mechanisms (such as 

Ullman cross-coupling), radical polymerization is not controlled by the diffusion of species that 

have previously been activated. Thus, in radical polymerization, the size of the polymers formed 

does not significantly depend on the reaction time as is the case for step-growth reaction where 

a very long reaction time is required to obtain highly-ordered and large-scale polymers.63 With 

these considerations in mind, we turned to radical polymerization on surfaces. The fact that first, 

their radical polymerization can be initiated by UV-light even in the absence of a photoinitiator,64 

and second, that it does not require an intermediate self-assembled organization of the 

molecules on the substrate, makes maleimides ideal building blocks to obtain micrometre-sized 

nanofibres on insulating surfaces in UHV. 

We used N,N’-(1,4-Phenylene)dimaleimide as building blocks due to the presence of two 

maleimide rings which should facilitate the growth of the targeted nanofibres. In addition, the 

presence of electron-rich C=O favours the electrostatic molecule-substrate interaction between 

the four oxygen atoms of the molecule and alkali cations of the surface.65 The MS interactions 

have been investigated by DFT calculations on the KCl(001) surface. The binding energy of 1.4 

eV per molecule is to a large extent caused by VdW interactions (0.9 eV). The strongest site-

specific interaction is formed between the oxygen atoms of the two maleimide moieties pointing 

towards K+ cations of the surface. Charge density difference plots show weak polarizations 

stabilizing mainly ionic interactions between these oxygen atoms and K+ cations (Figure 1), as 

well as polarization of aromatic ring density towards surface cations. The configuration 

presented in Figure 1 is the energetically most favoured, however, other configurations with the 

central benzene ring parallel to the surface and the maleimide rings turned out of plane (and 

thus only one oxygen atom per maleimide ring interacting with a surface cation) are 

energetically very close. Therefore, especially at room temperature (RT), monomers diffusing on 

the surface can find their position to undergo a covalent bond to neighbouring (radical) 

molecules.  

 

Surface-induced 1D Polymer on KCl (without UV illumination) 

Figure 2a-c display ncAFM images of the polymer fibres formed when 0.7 ML of dimaleimide 

derivatives were deposited onto the KCl (001) surface. Upon deposition, the molecules form 

some diffusing 2D self-assembled structures and a diluted gas phase which slowly (in a few 

hours) dewet to form large 3D crystallites (see Supplementary Figure 4). As long as the 

monomers diffuse on the surface the polymerization continues, and fibres of up to 1µm length 

were formed. The fibres are oriented along the <100> and <010> directions of the KCl substrate 

(indicated by aKCL and bKCl in the figures). In areas where the fibres are well aligned with the 

substrate and stabilized (by clusters or other fibres), the inner structure shows a slight rumpling 

which is evidenced in a zig-zag structure of alternating dots showing a periodicity of 25Å ± 1Å 

(Figure 2b). A detailed analysis of the inner fibre structure as shown in Figure 2c permits to 

establish a geometrical model of the structure. The experimentally observed zig-zag structure 



contains two times five molecules per dot, oriented oppositely and polymerized in a “zip-like” 

geometry. The mean separation between molecules along a chain is 5Å ± 0.2Å which can be 

deduced either from the periodicity of the zig-zag structure in Figure 2b or from an evaluation of 

Figure 2c taking into account the simultaneously resolved KCl substrate with its known lattice 

constant (centred unit cell of 6.3Å, only one type of ion is visible in ncAFM images). The 

observed zig-zag structure comes from the fact that the maleimide molecules along the fibre  

are positioned above potassium cations along the <100> or <010> direction of the KCl 

substrate.  The fact that the positions of these species coincide with each other is evidenced 

geometrically by the agreement of five molecular distances 5*5Å ≈ 25Å with four KCl unit cells 

4*6.3Å = 25.2Å. Figure 2d displays a structure obtained by DFT/MD (Molecular Dynamics) 

calculations which take as input the experimentally deduced geometrical model (detailed 

description of the DFT/MD calculations below). The central polymer carbon chain is sp3 

hybridized and non-planar.  

 

Effect of UV-illumination 

Figure 3 shows the comparison of a sample prepared without and one with UV-illumination by a 

light emitting diode (LED, 14 hours illumination). The fibres on the illuminated sample are 

interlinked with each other and form a network which in some areas encloses remaining 2D 

supramolecular arrangement (which can no longer diffuse and dewet into 3D crystallites). Due 

to the relatively small intensity of the UV light, the initiation of the chain-like polymerization is still 

a rare event, however about two orders of magnitude more frequent than without UV light as 

can be seen by the number of fibres formed in Figure 3b compared to Figure 3a. On illuminated 

sample areas, the propagation of the chain polymerization is limited by neighbouring fibres. 

 

Stability of the 1D polymer fibres 

Different ways are described in literature in order to prove that an observed structure is really 

covalently bound: most frequently geometrical comparison with calculated structures or thermal 

stability are evaluated, but also manipulation by an STM tip were used.7, 10, 35, 49, 66 Besides the 

above described structural calculations (Figure 2d) which are in excellent agreement with the 

experimental images, and an evaluation of the thermal stability (Supplementary Figure 3) which 

confirms the covalent linking of the molecules, we also tested the mechanical stability of the 

fibres. Thereto, the ncAFM tip was placed on top of a chosen fibre and approached until an 

instability occurred. Figure 4 shows the images of pairwise identical sample areas before and 

after a mechanical manipulation at the point indicated with a black cross in figs. a, c, and e. The 

fibre in the first manipulation (Figure 4a and b) detaches from the step edge in the lower part of 

the image and changes its conformation upon the indentation of the tip in the upper part. The 

fibre in the second series (figs. c and d) is completely removed from the surface (presumably 

onto the tip), and in the third series (figs. e and f) the already bent fibre completely changes its 

form. These three examples clearly prove the mechanical stability of the fabricated, covalently-

bound fibres. 



 

Discussion 
The N,N’-(1,4-Phenylene)dimaleimide molecules adsorb in a rather flexible geometry on the KCl 

surface with always at least two or even four oxygen atoms interacting with the K+ cations of the 

surface (see Figure 1).  The dimaleimide monomers diffuse on the surface at RT and form a 2D 

gas phase before they slowly dewet to form large 3D crystals (for more details about the 

nucleation and growth see Supplementary Figures 4 and 5). The polymerization is most 

probably initiated by the flexible conformation of the molecules on the surface which allows for a 

rotation of the maleimide rings and thus facilitates the C-C bond formation between 

neighbouring molecules. The polymerization starts by electrophilic addition of another molecule, 

leading to the polymer formation (see Supplementary Figure 1). This process is still rare and 

poorly effective because K+ cations are not as strong electrophiles as usually used for 

maleimide polymerization.59 Therefore, only a few nanofibres are formed in the absence of UV-

light (Figure 3a). 

In the case of UV-light illumination, the process of polymerization is well known in solution or in 

solid state. The initiation step is based on the formation of a triplet biradical species due to the 

absorption of light. Then the propagation step is based on the addition of other maleimide 

molecules to this biradical species (Supplementary Figure 2). The formation of generated triplet 

biradical species on the KCl surface has been investigated by means of DFT simulations. The 

formation of a triplet biradical of N,N’-(1,4-Phenylene)dimaleimide molecule adsorbed on KCl 

requires 2.1 eV. Therefore, the UV-light excitation of N,N’-(1,4-Phenylene)dimaleimide 

molecules is efficient and the growth of nanowires is initiated (Figure 3b). The addition of a 

second N,N’-(1,4-Phenylene)dimaleimide strongly stabilizes the corresponding triplet biradical 

due to the formation of a C-C bond, its energy being 0.40 eV below that of the adsorbed 

reactants. Once the growth is initiated by the formation of a biradical dimer it is only stopped by 

either surface defects (clusters, neighbouring fibres) or by exhaustion of the precursor 

molecules due to dewetting for example. Please note that by a proper choice of the molecule’s 

polar end-groups and the used alkali-halide substrate, both the diffusion and the dewetting can 

be controlled precisely as we have shown for other molecules.65  

In order to gain more insight into the reaction mechanisms involved in the nucleation of the 

polymer chains we calculated the energies of the transition states (TS) by means of the NEB 

method. These calculations confirm that the nucleation via a biradical dimer and the subsequent 

propagation are possible by a single molecule in the excited state (Supplementary Figure 6). 

The localised nature of the biradical species dictates the growth of the chain (Supplementary 

Figure 7): the radical sites are the only locations a monomer can add to the growing chain. 

Finally, we simulated a polymer of N,N’-(1,4-Phenylene)dimaleimide, with repeat unit of 5 

molecules, along the <100> or <010> direction of the KCl surface by DFT/MD calculations. The 

binding energy in this infinite fibre increases to 1.9 eV per molecule, compared to the 1.4 eV for 

a single N,N’-(1,4-Phenylene)dimaleimide on KCl. This larger binding energy mainly originates 

from intrachain VdW interactions. The electrostatic interactions between oxygen atoms of the 



outer maleimides ring (which were not involved in the polymerization process) with K+ cations 

determine the preferred adsorption geometry.  

The observed polymerization is a chain-growth reaction in which the reactive species (that is, 

the growing fibres) do not need to diffuse to react. The fact that we observe the formation of 

large and probably defect-free fibres is largely due to the combination of a 2D gas phase that 

provides sufficient precursor molecules with a radical polymerisation mechanism in which the 

structure grows molecule by molecule to reach lengths of up to one micrometre.An unhindered 

propagation of the growth is only possible in a 2D gas (once initiated); in contrast, in cases 

involving a 2D self-assembled intermediate structure, the growth would quickly be stopped as 

no precursor molecules could diffuse to increase the fibre length. The only exception in which a 

regular self-assembled structure could be polymerised into a defect-free covalent one would be 

when the lattices of both structures are identical. Additionally, we feel that the substrate 

templating effect also contributes to the formation of fibres that are mostly defect-free. The 

above described binding energy between oxygen atoms of the growing fibre and the cations of 

the substrate stabilises the fibre and guides the formation in the <100> or <010> direction of the 

ionic surface.  

In a step-growth reaction, dimers and multimers would be formed all over the surface. Due to 

the increasing binding energy of these aggregates (that is, monomers that  form oligomers), 

larger aggregates would no longer be able to diffuse on the substrate and optimize their 

geometry in order to form a long, regular structure.  

We believe that the formed fibres are defect-free although we were not able to image the full 

length of a fibre with molecular resolution. We feel that this conclusion is supported by (i) the 

mechanism of radical polymerization, where one initiation leads to a very long polymer fibre 

which grows rather fast (Supplementary Figure 5).  Our calculations of the radical spin density 

show that there is only one exact position on each fibre end where the polymerization can 

proceed. This indicates that, at least for 1D chain growth, it is not probable that a second 

initiation would happen exactly at the place where an existing fibre was terminated, causing a 

defect in the resulting fibre. (ii) The fact that the observed zig-zag structure is caused by oxygen 

groups of the monomers in the fibre being located above potassium cations on the surface. The 

zig-zag structure observed is very regular, suggesting that it is defect-free. (iii) Finally, the 

shapes of some fibres deviates from perfect linearity. In our opinion, this comes from weak 

interactions between the fibres and the substrate, and the fact that the fibres can easily be bent. 

Therefore, any defects in or on the surface can easily disturb the linear appearance of the 

fibres. This was more frequently observed  on surfaces with more fibres than the ones in Figure 

2, where most fibres appear regular and aligned with the substrate crystallographic axis.  

Conclusion 
We present a radical, side-product-free polymerization on a bulk insulating surface that leads to 

the formation of micrometer-long polymer fibres. In this approach, first, the molecule and alkali-

halide surface chosen enable the deposited precursor molecules to form a 2D gas phase rather 

than a rigid self-assembled layer. This in turn leads to the formation of long and regular 



structures, as the precursor molecules are easily accessible, but the radicals do not need to 

diffuse or rearrange to form the covalent structure. Second, the molecule-substrate electrostatic 

interaction and the molecule’s conformation on the substrate allow for both rare spontaneous 

initiation and UV-light induced initiation of the radical polymerization at room temperature. Once 

initiated, the chain-like polymerization proceeds easily and is only stopped by either defects on 

the surface or exhaustion of the precursor molecules. In future work, we will focus on applying 

this synthetic method to the formation of two-dimensional and electrically conducting structures. 

Methods 

Design of maleimide molecules 
N,N’-(1,4-Phenylene)dimaleimide molecules were purchased from Aldrich. Molecules were 

purified by recrystallization in propan-2-ol prior to use. 

Sample preparation 
Ionic single-crystal substrates (MaTeck Material-Technologie & Kristalle GmbH, Im 

Langenbroich 20, 52428 Jülich, Germany) were cleaved ex situ, quickly introduced into UHV 

and annealed for one hour to 240°C in order to achieve clean surfaces presenting large terraces 

and evaporation spirals. Approximately 0.7 monolayer (ML) of dimaleimide molecules were 

deposited from a home-made evaporation cell using quartz crucibles (evaporation temperature 

115°C) onto the sample kept at room temperature. Evaporation rates were set to about 0.5 

monolayer per minute by monitoring the deposition by means of a quartz oscillator and a 

frequency meter (TF930 from Aim-TTi: Glebe Road, Huntingdon, Cambridgeshire, PE29 7DR 

United Kingdom). Some samples were irradiated for half a day by an UV LED kept ex situ 

(Roithner DUV265-HL5NR, 265nm (4.7eV), 0.5mW, TO5 case with internal reflector and 

hemispherical quartz glass lens; ROITHNER LASERTECHNIK GmbH, Wiedner Hauptstrasse 

76, A-1040 Vienna, Austria) which was focalized through an UV transparent viewport onto the 

sample (spot radius about 10mm). During all sample preparation, the UHV pressure was always 

< 2 x 10-10 mbar, we have no indication that the dimaleimide molecules degrade or polymerize in 

the quartz crucible during the multiple evaporation cycles made for these experiments. 

Noncontact Atomic Force Microscopy measurements 
All measurements were performed by a variable-temperature noncontact Atomic Force 

Microscope (VT-AFM: Scienta Omicron GmbH, Limburger Strasse 75, D - 65232 Taunusstein) 

operated at room temperature and under UHV conditions (< 10-10 mbar). The instrument is 

equipped with home-build in situ and ex situ ncAFM preamplifiers and controlled by an RHK R9 

controller (RHK technology, 1050 E. Maple Road, Troy, MI 48083, USA). Careful calibration of 

the scanner were made by atomic resolution images on clean ionic substrates. ncAFM images 

were evaluated by means of the WSxM software.67 Nanosensor cantilevers were used (PPP-

NCL with resonance frequency f0 ~ 150 kHz, spring constant k ~ 30 N/m, quality factor Q ~ 

40000, and oscillation amplitudes A0 of 2-5 nm). 



Computational Methods 
Calculations were performed at the PBE0-D3 dispersion-corrected density functional 68,69 level 

of theory within the CP2K software package. 70  We used high-quality TZV2P molecularly 

optimized 71 basis sets for the molecule and DZVP for the KCl surface, with accompanying GTH 

pseudopotentials.72  A 600 Ry cutoff auxiliary plane-wave basis set 73  was used and pFIT3 

auxiliary Gaussian basis sets used with Auxiliary Density Matrix Method approximation to make 

the hybrid calculations feasible. Geometry optimization was performed until all forces on atoms 

were smaller than 0.25 eV/nm. We used a 4x4x2 conventional unit cell structure for calculations 

of isolated monomers, and 4x8x2 supercells for all multimer and transition state calculations. A 

4x7x2 cell was used for the polymer chain calculations. The experimental lattice constant of KCl 

was used for convenient comparison to experiment. 

Barriers were calculated using Climbing Image Nudged Elastic Band method at PBE0 level of 

theory with 7 images (5 intermediate images between reactant and product). NEBs were 

considered adequately converged when the TS energy changed by less than 1 meV in two 

successive steps.74, 75 

Data Availability Statement 
The datasets generated and analysed during the current study are available within the Article 

and its Supplementary Information, and/or from the corresponding author upon reasonable 

request.  
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Figure Captions: 

Figure 1: Calculated structure and charge-difference plot of a dimaleimide molecule (light blue, 

C; dark blue, N; red, O; white, H) adsorbed on the KCl (001) surface (light grey, K and green, Cl 

atoms). The molecule’s oxygen atoms interact with the potassium cations of the substrate. a) 

top-view, b) side-view, and c) front-view. Charge density differences are represented in 

transparent blue (increase) and red (decrease) and show isosurfaces of 0.001 e/Å3 charge 

difference. 

 

Figure 2: Evaluation of the polymer structure obtained upon polymerization without light. a) 

Large scale ncAFM image of an as prepared surface with a 1µm long fibre (scan window turned 

by 45° with respect to all other images); b) close up showing the typical zig-zag structure of 

fibres illustrated by four circles overlaid on the fibre c) high-resolution image showing both the 

substrate lattice constant as well as the zip-arrangement of the polymer fibre (zig-zag structure 

and periodic cell overlaid); the zig-zag structure reflects a topological rumpling of the fibre due to 

a coincidence of every fifth molecule with the forth cation along the substrate’s crystal axis (aKCl, 

bKCl); the rectangle in blue shows the periodic cell used in calculations.d) DFT relaxed structure 

of the polymer fibre on the KCl surface.  

 

Figure 3: Influence of weak UV illumination on the growth of the polymer fibres. a,b, ncAFM 

images of 0.7 ML of dimaleimide deposited onto KCl without (a) and with UV light (14 hours 

illumination, deposition during the first minute only) (b). 

 

Figure 4: Proof of the mechanical stability of the fibres. Successful mechanical manipulation 

was induced by approaching the tip to the part of the fibre indicated by a cross in the top panels. 

a,b, When the upper end of the fibre was manipulated (a), the lower end detached from the 

substrate step edge and the upper-end geometry changed (b). c,d, A complete fibre (c) stuck to 

the tip was removed from the surface (d). e,f, The geometry of an already bent fibre (e) was 

changed (f). 
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Figure 1: Calculated structure and charge-difference plot of a dimaleimide molecule 

adsorbed on the KCl (001) surface (white K and green Cl atoms). The molecule’s oxygen 

atoms interact with the potassium cations of the substrate. a) top-view, b) side-view, and c) 

front-view. Charge density differences are in transparent blue (increase) and red (decrease) 

and show isosurfaces of 0.001 e/Å3 charge difference. 

 

  



 

 

Figure 2: Evaluation of the polymer structure obtained upon polymerization without light. a) 

Large scale ncAFM image of an as prepared surface with a 1µm long fibre (scan window 

turned by 45° with respect to all other images); b) close up showing the typical zig-zag 

structure of fibres; c) high-resolution image showing both the substrate lattice constant as 

well as the zip-arrangement of the polymer fibre (zig-zag structure and periodic cell overlaid); 

the zig-zag structure reflects a topological rumpling of the fibre due to a coincidence of every 

fifth molecule with the forth cation along the substrate’s crystal axis (aKCl, bKCl); d) DFT 

relaxed structure of the polymer fibre on the KCl surface (white K and green Cl atoms). The 

box drawn is the periodic cell used in calculations. 

  



 

 

 

 

 

 

 

 

 

Figure 3: Influence of weak UV illumination illumination on the growth of the polymer fibres. 

ncAFM images of 0.7 ML of dimaleimide deposited onto KCl without (a) and with (b) UV light 

(14 hours illumination, deposition during the first minute only). 

 

  



 

 

 

 

 

 

 

Figure 4: Proof of the mechanical stability by means of three different examples of a 

successful mechanical manipulation induced by approaching the tip to the part of the fibre 

indicated by a cross in figures a, c, and e. (images a & b) The upper end of the fibre was 

manipulated  the lower end detached from the substrate step edge and the upper-end 

geometry changed; (c & d) a complete fibre stuck to the tip and was removed from the 

surface; (e & f) the geometry of an already bent fibre was changed. 
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