353 research outputs found
Chapter New Opportunities in Metabolomics and Biochemical Phenotyping for Plant Systems Biology
Pollution contro
New Opportunities in Metabolomics and Biochemical Phenotyping for Plant Systems Biology
Pollution contro
MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles
<p>Abstract</p> <p>Background</p> <p>Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments.</p> <p>Description</p> <p>MeRy-B, the first platform for plant <sup>1</sup>H-NMR metabolomic profiles, is designed (<it>i</it>) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (<it>ii</it>) for queries and visualization of the data, (<it>iii</it>) to discriminate between profiles with spectrum visualization tools and statistical analysis, (<it>iv</it>) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues.</p> <p>Conclusion</p> <p>MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from <url>http://www.cbib.u-bordeaux2.fr/MERYB/index.php</url>.</p
1H-NMR metabolomics: Profiling method for a rapid and efficient screening of transgenic plants
Metabolomics-based approaches are methods of choice for studying changes in fruit composition induced by environmental or genetic modulation of biochemical pathways in the fruit. Owing to enzyme redundancy and high plasticity of the metabolic network, transgenic alteration of the activity of the enzymes from the central metabolism very often results in only slight modifications of the fruit composition. In order to avoid costly and time-consuming plant analysis, we used a fast and sensitive 1H-NMR-based metabolomic profiling technique allowing discovery of slight metabolite variations in a large number of samples. Here, we describe the screening of transgenic tomato plants in which two genes from the central metabolism, phosphoenolpyruvate carboxylase (EC.3.4.1.1) and malate synthase (EC 2.3.3.9) were silenced by antisens and RNAi strategy. 1H-NMR metabolomic profiles of methanol-d4 D2O buffer extracts of tomato fruit flesh were acquired and subjected to unsupervised multivariate statistical analysis. 1H-NMR spectra were binned into variable-size spectral domains, making it possible to get an overall analysis of a large number of resonances, even in the case of uncontrolled variation of the chemical shift. Principal component analysis was used to separate groups of samples and to relate known and unknown metabolites to transgenic events. The screening of 100 samples, from extraction to data mining, took 36 h. Thus, this procedure allows the rapid selection of metabolic phenotypes of interest among about 30 transgenic lines.Key words: Metabolome, GMO, tomato, fruit, 1H-NMR profiling, screening
An inter-laboratory comparison demonstrates that [1H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection
In any metabolomics experiment, robustness and reproducibility of data collection is of vital importance. These become more important in collaborative studies where data is to be collected on multiple instruments. With minimisation of variance in sample preparation and instrument performance it is possible to elucidate even subtle differences in metabolite fingerprints due to genotype or biological treatment. In this paper we report on an inter laboratory comparison of plant derived samples by [1H]-NMR spectroscopy across five different sites and within those sites utilising instruments with different probes and magnetic field strengths of 9.4 T (400 MHz), 11.7 T (500 MHz) and 14.1 T (600 MHz). Whilst the focus of the study is on consistent data collection across laboratories, aspects of sample stability and the requirement for sample rotation within the NMR magnet are also discussed. Comparability of the datasets from participating laboratories was exceptionally good and the data were amenable to comparative analysis by multivariate statistics. Field strength differences can be adjusted for in the data pre-processing and multivariate analysis demonstrating that [1H]-NMR fingerprinting is the ideal technique for large scale plant metabolomics data collection requiring the participation of multiple laboratories
(Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula
Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes
COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access
Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative ‘coordination of standards in metabolomics’ (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities’ participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards
- …