271 research outputs found

    Dynamics of sward condition and botanical composition in mixed pastures of marandugrass, forage peanut and tropical kudzu

    Get PDF
    This study was carried out to evaluate the dynamics of sward condition and botanical composition of a mixed pasture of marandugrass (Brachiaria brizantha cv. Marandu), forage peanut (Arachis pintoi cv. Mandobi) and tropical kudzu (Pueraria phaseoloides), rotationally stocked at four daily forage allowance levels (6.6, 10.3, 14.3 and 17.9% of live weight). Sward condition was characterized in each stocking cycle by measuring pre- and post-grazing sward height, forage mass and percentage of bare ground. Botanical composition (grass, forage peanut, tropical kudzu and weeds) was evaluated before each stocking period. Swards under smaller forage allowances presented lower height, forage mass and ground cover. This condition favored the growth of forage peanut, which constituted 21.1, 15.2, 8.4 and 3.8% of forage mass in the last quarter of the experimental period, from the lowest to the highest forage allowance, respectively. Tropical kudzu was sensitive to all forage allowance levels and its percentage in the botanical composition was strongly reduced along the experimental period, especially during the dry season (July to September). Forage peanut cv. Mandobi and marandugrass form a more balanced mixture when pre-grazing sward height is maintained shorter than 45 cm. Tropical kudzu is intolerant to intensive grazing management systems when associated to marandugrass

    The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model.

    Get PDF
    Mitochondrial dysfunctions critically impair nervous system development and are potentially involved in the pathogenesis of various neurodevelopmental disorders, including Down syndrome (DS), the most common genetic cause of intellectual disability. Previous studies from our group demonstrated impaired mitochondrial activity in peripheral cells from DS subjects and the efficacy of epigallocatechin-3-gallate (EGCG) - a natural polyphenol major component of green tea - to counteract the mitochondrial energy deficit. In this study, to gain insight into the possible role of mitochondria in DS intellectual disability, mitochondrial functions were analyzed in neural progenitor cells (NPCs) isolated from the hippocampus of Ts65Dn mice, a widely used model of DS which recapitulates many major brain structural and functional phenotypes of the syndrome, including impaired hippocampal neurogenesis. We found that, during NPC proliferation, mitochondrial bioenergetics and mitochondrial biogenic program were strongly compromised in Ts65Dn cells, but not associated with free radical accumulation. These data point to a central role of mitochondrial dysfunction as an inherent feature of DS and not as a consequence of cell oxidative stress. Further, we disclose that, besides EGCG, also the natural polyphenol resveratrol, which displays a neuroprotective action in various human diseases but never tested in DS, restores oxidative phosphorylation efficiency and mitochondrial biogenesis, and improves proliferation of NPCs. These effects were associated with the activation of PGC-1α/Sirt1/AMPK axis by both polyphenols. This research paves the way for using nutraceuticals as a potential therapeutic tool in preventing or managing some energy deficit-associated DS clinical manifestations

    Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain

    Get PDF
    In mammalian cells the nuclear-encoded subunits of complex I are imported into mitochondria, where they are assembled with mt-DNA encoded subunits in the complex, or exchanged with pre-existing copies in the complex. The present work shows that in fibroblast cultures inhibition by KH7 of cAMP production in the mitochondrial matrix by soluble adenylyl cyclase (sAC) results in decreased amounts of free non-incorporated nuclear-encoded NDUFS4, NDUFV2 and NDUFA9 subunits of the catalytic moiety and inhibition of the activity of complex I. Addition of permeant 8-Br-cAMP prevents this effect of KH7. KH7 inhibits accumulation in isolated rat-liver mitochondria and incorporation in complex I of "in vitro" produced, radiolabeled NDUFS4 and NDUFV2 subunits. 8-Br-cAMP prevents also this effect of KH7. Use of protease inhibitors shows that intramitochondrial cAMP exerts this positive effect on complex I by preventing digestion of nuclear-encoded subunits by mitochondrial protease(s), whose activity is promoted by KH7 and H89, an inhibitor of PKA

    Mitochondrial cAMP prevents apoptosis modulating Sirt3 protein level and OPA1 processing in cardiac myoblast cells

    Get PDF
    Mitochondria, responding to a wide variety of signals, including oxidative stress, are critical in regulating apoptosis that plays a key role in the pathogenesis of a variety of cardiovascular diseases. A number of mitochondrial proteins and pathways have been found to be involved in the mitochondrial dependent apoptosis mechanism, such as optic atrophy 1 (OPA1), sirtuin 3 (Sirt3), deacetylase enzyme and cAMP signal. In the present work we report a network among OPA1, Sirt3 and cAMP in ROS-dependent apoptosis. Rat myoblastic H9c2 cell lines, were treated with tert-butyl hydroperoxide (t-BHP) to induce oxidative stress-dependent apoptosis. FRET analysis revealed a selective decrease of mitochondrial cAMP in response to t-BHP treatment. This was associated with a decrease of Sirt3 protein level and proteolytic processing of OPA1. Pretreatment of cells with permeant analogous of cAMP (8-Br-cAMP) protected the cell from apoptosis preventing all these events. Using H89, inhibitor of the protein kinase A (PKA), and protease inhibitors, evidences have been obtained that ROS-dependent apoptosis is associated with an alteration of mitochondrial cAMP/PKA signal that causes degradation/proteolysis of Sirt3 that, in turn, promotes acetylation and proteolytic processing of OPA1

    Mitochondria, Oxidative Stress, cAMP Signalling and Apoptosis: A Crossroads in Lymphocytes of Multiple Sclerosis, a Possible Role of Nutraceutics

    Get PDF
    Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood–brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspect

    cAMP/PKA Signaling Modulates Mitochondrial Supercomplex Organization

    Get PDF
    The oxidative phosphorylation (OXPHOS) system couples the transfer of electrons to oxygen with pumping of protons across the inner mitochondrial membrane, ensuring the ATP production. Evidence suggests that respiratory chain complexes may also assemble into supramolecular structures, called supercomplexes (SCs). The SCs appear to increase the efficiency/capacity of OXPHOS and reduce the reactive oxygen species (ROS) production, especially that which is produced by complex I. Studies suggest a mutual regulation between complex I and SCs, while SCs organization is important for complex I assembly/stability, complex I is involved in the supercomplex formation. Complex I is a pacemaker of the OXPHOS system, and it has been shown that the PKA-dependent phosphorylation of some of its subunits increases the activity of the complex, reducing the ROS production. In this work, using in ex vivo and in vitro models, we show that the activation of cAMP/PKA cascade resulted in an increase in SCs formation associated with an enhanced capacity of electron flux and ATP production rate. This is also associated with the phosphorylation of the NDUFS4 subunit of complex I. This aspect highlights the key role of complex I in cellular energy production

    Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases

    Get PDF
    In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved

    cAMP-dependent protein kinase regulates post-translational processing and expression of complex I subunits in mammalian cells

    Get PDF
    AbstractWork is presented on the role of cAMP-dependent protein phosphorylation in post-translational processing and biosynthesis of complex I subunits in mammalian cell cultures. PKA-mediated phosphorylation of the NDUFS4 subunit of complex I promotes in cell cultures in vivo import/maturation in mitochondria of the precursor of this protein. The import promotion appears to be associated with the observed cAMP-dependent stimulation of the catalytic activity of complex I. These effects of PKA are counteracted by activation of protein phosphatase(s). PKA and the transcription factor CREB play a critical role in the biosynthesis of complex I subunits. CREB phosphorylation, by PKA and/or CaMKs, activates at nuclear and mitochondrial level a transcriptional regulatory cascade which promotes the concerted expression of nuclear and mitochondrial encoded subunits of complex I and other respiratory chain proteins

    Molecular, Enzymatic, and Cellular Characterization of Soluble Adenylyl Cyclase From Aquatic Animals.

    Get PDF
    The enzyme soluble adenylyl cyclase (sAC) is the most recently identified source of the messenger molecule cyclic adenosine monophosphate. sAC is evolutionarily conserved from cyanobacteria to human, is directly stimulated by [Formula: see text] ions, and can act as a sensor of environmental and metabolic CO2, pH, and [Formula: see text] levels. sAC genes tend to have multiple alternative promoters, undergo extensive alternative splicing, be translated into low mRNA levels, and the numerous sAC protein isoforms may be present in various subcellular localizations. In aquatic organisms, sAC has been shown to mediate various functions including intracellular pH regulation in coral, blood acid/base regulation in shark, heart beat rate in hagfish, and NaCl absorption in fish intestine. Furthermore, sAC is present in multiple other species and tissues, and sAC protein and enzymatic activity have been reported in the cytoplasm, the nucleus, and other subcellular compartments, suggesting even more diverse physiological roles. Although the methods and experimental tools used to study sAC are conventional, the complexity of sAC genes and proteins requires special considerations that are discussed in this chapter

    Long-term Bias of Internal Markers in Sheep and Goat Digestion Trials

    Get PDF
    Two digestion trials, one with sheep and another with goats, were conducted to evaluate the long-term bias (LTB) of the indigestible dry matter (iDM), indigestible neutral detergent fiber (iNDF) and indigestible acid detergent fiber (iADF) internal markers. The study used eight Santa Inês castrated male sheep (average body weight of 16.6 kg) distributed in two 4×4 Latin squares and eight Saanen castrated male goats (average body weight of 22.6 kg) distributed in two 4×4 Latin squares. The experiments were conducted simultaneously, and the animals were housed in 1.2 m2 individual pens with wood-battened floors equipped with individual feeders and drinkers. The animals received isonitrogenous diets that were offered ad libitum and contained 14% crude protein and 70% sugar cane (with 0, 0.75, 1.5 or 2.25% CaO, in natural matter percentage), corrected with 1% urea and 30% concentrate. The experiment consisted of four experimental periods of 14 d each, with the feed, leftovers and feces sampled on the last four days of each period. The marker concentrations in the feed, leftovers and fecal samples were estimated by an in situ ruminal incubation procedure with a duration 240 h. The relationship between the intake and excretion of the markers was obtained by adjusting a simple linear regression model, independently from the treatment (diets) fixed effects and Latin squares. For both the sheep and goats, a complete recovery of the iDM and iNDF markers was observed (p>0.05), indicating the absence of LTB for these markers. However, the iADF was not completely recovered, exhibiting an LTB of −9.12% (p<0.05) in the sheep evaluation and −3.02% (p<0.05) in the goat evaluation
    • …
    corecore