79 research outputs found

    Intra-annual to multi-decadal xylem traits in a tropical moist semi-deciduous forest of Central Africa

    Get PDF
    A witness of a tree’s past conditions is the wood itself. The main research question of this dissertation is how to assess and reveal the driving forces of the patterns of wood traits on pith-to-bark cross-sections in tropical trees. Cambial and leaf phenology was monitored in the Luki Reserve (Mayombe forest, D.R. Congo). Furthermore, X-ray CT densitometry was explored to assess traits in a reliable way, for multiple species. Variability in phenology is observed for T. superba, which requires traits of individual trees to be fixed on a time axis. Furthermore, X-ray CT is a suitable method for assessing traits in a fast way. Cambial activity of understory trees has shown to be species-specific, whilst many trees show zero xylem growth. Finally, 66 years of tree growth was analysed, while trait analysis revealed a median ring count of only 32, thus implying many non-periodical rings. This work presents methodological improvements to measure traits as continuous variables from pith to bark, but also acknowledges that phenology still remains a key aspect in order to fix traits on a time axis. Key words: leaf phenology, wood anatomy, stable isotopes, Mayombe, dendrochronology, X-ray CT densitometr

    Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo Basin semi-deciduous forest

    Get PDF
    Plant functional traits have shown to be relevant predictors of forest functional responses to climate change. However, the trait-based approach to study plant performances and ecological strategies has mostly been focused on trait comparisons at the interspecific and intraspecific levels. In this study, we analyzed traits variation and association at the individual level. We measured wood and leaf traits at different height locations within the crown of five individuals of Pericopsis data (Harms) Meeuwen (Fabaceae) from the northern tropical forest of the Democratic Republic of the Congo. All traits varied between and within individuals. The between-individual variation was more important for leaf traits (23%-48%) than for wood traits (similar to 10%) where the within-individual variation showed to be more important (33%-39%). The sample location height within the crown was found to be the driving factor of this within-individual variation. In a gradient from the base to the top of the crown, theoretical specific hydraulic conductivity and specific leaf area decreased while the stomatal density increased. We found significant relationships among traits and between wood and leaf traits. However, these relationships varied with the position within the crown. The relationship between vessel size and vessel density was negative at the bottom part of the crown but positive upward. Also, the negative relationship between stomatal density and stomatal size became stronger with increasing height within the crown. Finally, the positive relationship between specific leaf area and theoretical specific hydraulic conductivity became stronger in higher parts of the crown, suggesting that P. data constantly adapts its water use with respect to its water supply, more strongly at the top of the crown where the environment is more extreme and less buffered against environmental fluctuations

    Tree Core Analysis with X-ray Computed Tomography.

    Full text link
    peer reviewedAn X-ray computed tomography (CT) toolchain is presented to obtain tree-ring width (TRW), maximum latewood density (MXD), other density parameters, and quantitative wood anatomy (QWA) data without the need for labor-intensive surface treatment or any physical sample preparation. The focus here is on increment cores and scanning procedures at resolutions ranging from 60 µm down to 4 µm. Three scales are defined at which wood should be looked at: (i) inter-ring scale, (ii) ring scale, i.e., tree-ring analysis and densitometry scale, as well as (iii) anatomical scale, the latter approaching the conventional thin-section quality. Custom-designed sample holders for each of these scales enable high-throughput scanning of multiple increment cores. A series of software routines were specifically developed to efficiently treat three-dimensional X-ray CT images of the tree cores for TRW and densitometry. This work briefly explains the basic principles of CT, which are needed for a proper understanding of the protocol. The protocol is presented for some known species that are commonly used in dendrochronology. The combination of rough density estimates, TRW and MXD data, as well as quantitative anatomy data, allows us to broaden and deepen current analyses for climate reconstructions or tree response, as well as further develop the field of dendroecology/climatology and archeology

    Workshop Training: Collective Bargaining and Contract Implementation for Administrators

    Get PDF
    This Much I Know Is True: Five Intangible Influences on Collective Bargainin

    Can anti-cyclic citrullinated peptide antibody-negative RA be subdivided into clinical subphenotypes?

    Get PDF
    ABSTRACT: INTRODUCTION: Studies investigating genetic risk factors for susceptibility to rheumatoid arthritis (RA) studied anti-citrullinated peptide antibody (CCP)-positive RA more frequently than anti-CCP-negative RA. One of the reasons for this is the perception that anti-CCP-negative RA may include patients that fulfilled criteria for RA but belong to a wide range of diagnoses. We aimed to evaluate the validity of this notion and explored whether clinical subphenotypes can be discerned within anti-CCP-negative RA. METHODS: The 318 patients with anti-CCP-negative RA (1987 ACR criteria), included in the Leiden Early Arthritis Clinic between 1993 and 2006, were studied for baseline characteristics and radiologic progression data during a mean follow-up of 5 years. Grouping was studied both at variable and patient levels. Principal components analysis and partial least-squares regression were applied to study for clustering of variables. A cluster analysis was performed to look for clustering of patients. RESULTS: The simultaneous presence of patient characteristics at disease presentation was observed for several groups; however, the three largest groups of patients' characteristics explained only 26.5% of the total variance. Plotting the contribution of each patient to these three groups did not reveal clustering of patients. Comparable observations were made when data on progression of joint destruction were studied in relation to baseline clinical data. A cluster analysis, evaluating whether patients resemble each other, revealed no grouping of patients. Altogether, no clinically distinguishable subphenotypes were observed. CONCLUSIONS: The current data provide evidence that, for risk-factor studies, anti-CCP-negative RA patients can be studied as one group

    Can silviculture help tackle climate change ?

    Full text link
    editorial reviewedL’augmentation de la concentration en dioxyde de carbone (CO2) dans l’atmosphère terrestre attire l’attention vers les forêts et les produits bois pour le rôle qu’ils peuvent jouer dans l’atténuation du changement climatique. Il subsiste cependant de grandes incertitudes quant à la stratégie à favoriser pour optimiser le bilan carbone du secteur forestier. C’est notamment le cas pour la sylviculture, dont l’influence sur le bilan carbone est étroitement liée au contexte environnemental et climatique local.13. Climate actio

    Climate driven trends in tree biomass increment show asynchronous dependence on tree-ring width and wood density variation

    Get PDF
    Tree growth is a key ecosystem function supporting climate change mitigation strategies. However climate change may induce feedbacks on radial growth and wood density, affecting the carbon sequestration capacity of forests. Using a mixed modeling technique long-term trends in radial growth, wood density and above-ground biomass, defined as the product of the annual basal area growth with the wood density, of common beech (Fagus sylvatica) and sessile oak (Quercus petraea) in the Belgian Ardennes, were determined and explained using climate drivers of change. This modeling strategy allowed us to determine if the same conclusions can be drawn when only BAI is considered, as is assumed in most carbon sequestration studies, when looking at long-term trends in carbon sequestration. The models indicate that above-ground biomass increment changes over time are more driven by changes in radial growth than by changes in wood density. Nevertheless, the assumption of constant wood density in most carbon sequestration studies is incorrect. Ignoring wood density results in an underestimation of long-term trends in above-ground biomass increment for beech, and an overestimation of above-ground biomass increment for oak. Interesting is that radial growth is mostly driven by climate variables of the current year, whereas wood density is more driven by the climate variables of the previous year. Beech radial growth and wood density is found to be negatively influenced by drought and positively by water availability. Oak radial growth and wood density is negatively affected by late frost and positively by water availability. The findings of this study suggest that radial growth in combination with wood density should be used in carbon sequestration studies as different climate driven long-term trends in radial growth and wood density are found

    When xylarium and herbarium meet : linking Tervuren xylarium wood samples with their herbarium specimens at Meise Botanic Garden

    Get PDF
    Background: The current data paper aims to interlink the African plant collections of the Meise Botanic Garden Herbarium (BR) and the Royal Museum for Central Africa Xylarium (Tw). Complementing both collections strengthens the reference value of each institutional collection, as more complete metadata are made available and it enables increased quality control for the identification of wood specimens. Furthermore, the renewed connection enables the linking of available wood trait data with data on phenology, leaf morphology or even molecular information for many tree species, allowing assessments of performance of individual trees. In addition to studies at the interspecific level, comparisons at the intraspecific level become possible, which could lead to important new insights into resilience to and impact of global change, as well as biodiversity conservation or forest management of Central African forest ecosystems. New information: By interlinking the Tervuren Xylarium Wood database with the recently digitised herbarium of Meise Botanic Garden, we were able to establish a link between 6,621 xylarium and 9,641 herbarium records for 6,953 plant specimens. Both institutional databases were complemented with reliable specimen metadata. The Tervuren xylarium now profits from taxonomic revisions made by botanists at Meise Botanic Garden and a list of phenotypical features for woody African species can be extended with wood anatomical descriptors. New metadata from the Tw xylarium records were used to add the country of collection to 50 linked BR herbarium specimens for which this information was missing. Furthermore, metadata available from the labels on digitised BR herbarium specimens was used to update Tw xylarium records with the date of collection (817 records), collection locality (698 records), coordinates (482 records) and altitude (817 records). In conclusion, we created a reference database with reliable botanic identities which can be used in a range of studies, such as modelling analyses, community assessments or trait analyses, all framed in a spatiotemporal context. Furthermore, the linked collections hold historical reference data and specimens that can be studied in the context of global changes

    The utility of bulk wood density for tree-ring research

    Full text link
    Bulk wood density measurements are recognized for their utility in ecology, industry, and biomass estimations.. In tree-ring research, microdensitometric techniques are widely used, but their ability to determine the correct central tendency has been questioned. Though rarely used, it may be possible to use bulk wood density as a tool to check the accuracy of and even correct microdensitometric measurements. Since measuring bulk wood density in parallel with X-ray densitometry is quickly and easily done, we suspect that its omission is largely due to a lack of awareness of the procedure and/or its importance. In this study, we describe a simple protocol for measuring bulk wood density tailored for tree-ring researchers and demonstrate a few possible applications. To implement real-world examples of the applications, we used a sample of existing X-ray and Blue Intensity (BI) measurements from 127 living and dead Pinus sylvestris trees from northern Sweden to produce new measurements of bulk wood density. We can confirm that the central tendency in this sample material is offset using X-ray densitometry and that the diagnosis and correction of X-ray density is easily done using bulk wood density in linear transfer functions. However, this approach was not suitable for our BI measurements due to heavy discoloration. Nevertheless, we were able to use bulk wood density to diagnose and improve the use of deltaBI (latewood BI – earlywood BI) with regard to its overall trends and multi-centennial variability in a dendroclimatological application. Moreover, we experimented with percent of latewood width, scaled with bulk wood density, as a time- and cost-effective proxy for annual ring density. Although our reconstruction only explains about half of the variation in ring density, it is most likely superior to using fixed literature values of density in allometric equations aimed at biomass estimations. With this study, we hope to raise new awareness regarding the versatility and importance of bulk wood density for dendrochronology by demonstrating its simplicity, relevance, and applicability
    • …
    corecore