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A B S T R A C T

Tree growth is a key ecosystem function supporting climate change mitigation strategies. However climate
change may induce feedbacks on radial growth and wood density, affecting the carbon sequestration capacity of
forests. Using a mixed modeling technique long-term trends in radial growth, wood density and above-ground
biomass, defined as the product of the annual basal area growth with the wood density, of common beech (Fagus
sylvatica) and sessile oak (Quercus petraea) in the Belgian Ardennes, were determined and explained using cli-
mate drivers of change. This modeling strategy allowed us to determine if the same conclusions can be drawn
when only BAI is considered, as is assumed in most carbon sequestration studies, when looking at long-term
trends in carbon sequestration. The models indicate that above-ground biomass increment changes over time are
more driven by changes in radial growth than by changes in wood density. Nevertheless, the assumption of
constant wood density in most carbon sequestration studies is incorrect. Ignoring wood density results in an
underestimation of long-term trends in above-ground biomass increment for beech, and an overestimation of
above-ground biomass increment for oak. Interesting is that radial growth is mostly driven by climate variables
of the current year, whereas wood density is more driven by the climate variables of the previous year. Beech
radial growth and wood density is found to be negatively influenced by drought and positively by water
availability. Oak radial growth and wood density is negatively affected by late frost and positively by water
availability. The findings of this study suggest that radial growth in combination with wood density should be
used in carbon sequestration studies as different climate driven long-term trends in radial growth and wood
density are found.

1. Introduction

Forests play an important role in the carbon cycle, with an esti-
mated global net annual sink of 2.41 ± 0.42 Pg C (for 1990–2007),
42% of which is allocated to living biomass (Pan et al., 2011). Forest
conservation and restoration are therefore considered important miti-
gation strategies to reduce the greenhouse effect (Grassi et al., 2017).
However, the carbon sequestration service delivered by forests may
vary over time, in space and among tree species (Luyssaert et al., 2010;
Babst et al., 2013). Also, changes in external drivers including climate,
carbon dioxide (CO2) concentration, atmospheric pollutant deposition
and forest management influence the forest carbon sink (Ciais et al.,

2005; Pan et al., 2011). Considering the role of forests in the global
carbon cycle and their projected part in the implementation of the Paris
Agreement (Grassi et al., 2017), it is crucial to further refine our
knowledge on the interactions between the changing climate, CO2

concentration, pollutant deposition and the carbon storing capacity of
forests and trees (Fahey et al., 2010).

The most dynamic carbon pool in forests is the standing biomass
(Fahey et al., 2010). Understanding which environmental drivers are
influencing wood formation in a specific tree species and geographical
context is of key importance. Basal area increment (BAI, cm2) derived
from tree-ring width (TRW) data can give a retrospective insight in the
climate radial growth relationship. However, to obtain a retrospective
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view on above-ground biomass accumulation trends, wood density data
are needed as well, but are seldom measured. A recently developed
method by Van den Bulcke et al. (2014) allows reliable and cost-ef-
fective wood density measurements with an annual resolution using X-
ray images of tree cores. The combination of BAI data with wood
density measured at an annual scale, gives a long-term retrospective
view on above-ground biomass storage and its variability. In most
carbon sequestration studies, within-tree wood density is assumed to be
constant over time (Bouriaud et al., 2004), but the impact this as-
sumption has on local and national forest carbon assessments remains
unclear (Babst et al., 2014; Bouriaud et al., 2015).

Tree radial growth has been changing in European forests over the
last decades. Climate change (e.g. increased temperature), increased
CO2 and ozone concentration, and increased nitrogen deposition have
been identified as drivers of these growth changes (Bontemps and
Esper, 2011; Kint et al., 2012; Babst et al., 2013; Reyer et al., 2013).
Besides, wood density might also vary at the same time as radial growth
and hence influence the net carbon sequestrated at the tree level.
Currently, there is not much knowledge concerning possible long-term
trends in wood density (Bontemps et al., 2013). Small density decreases
(−2%) have been reported in sessile oak by Bergès et al. (2000) for the
period 1811–1993. For common beech a slight centennial decrease
(−7.5%, for the period 1900–2000) in wood density was observed by
Bontemps et al. (2013). It has been demonstrated that environmental
conditions at different times of the year are driving both radial growth
and wood density (Briffa et al., 2002; Frank and Esper, 2005; Babst
et al., 2014; Björklund et al., 2017). Hence, a faster radial growth could
possibly coincide with lower tree ring density, leading together to a
neutral effect on carbon sequestration.

In ring-porous tree species, there is a clear distinction between
earlywood and latewood. In diffuse porous tree species, there is a
gradual change from larger vessels at the beginning of the growing
season to smaller vessels at the end of the growing season. Higher
growth in ring-porous tree species is expected to result in rings with a
higher proportion of latewood (i.e. positive relationship between TRW
and wood density) (Bergès et al., 2000). For diffuse porous tree species,
the relationship between TRW and wood density is either slightly po-
sitive or absent (Bontemps et al., 2013; Babst et al., 2014; Zeller et al.,
2017). For conifers there is a quite good understanding of the drivers of
wood density (Björklund et al., 2017), for diffuse porous and ring-
porous tree species (as beech and oak) this knowledge is much poorer.

BAI and wood density data measured on common beech (diffuse-
porous) and sessile oak (ring-porous) cores will be used to study long-
term trends in radial growth, wood density and above-ground biomass.
Above-ground biomass increment is approximated as the product of BAI
and wood density. By applying a multilevel mixed modeling strategy,
changes in BAI (further referred to as radial growth), wood density and
above-ground biomass increment of individual trees related to tree aging
can be separated from possible long-term trends related to calendar year
for all trees. First, possible long-term trends in radial growth, wood
density and above-ground biomass of common beech and sessile oak are
modelled. The detected long-term trends in radial growth, wood density
and above-ground biomass are compared in order to determine possible
consequences of long-term trends in radial growth and wood density for
above-ground biomass increment. In this way we can assess what the
consequences are of ignoring wood density (i.e. considering radial

growth as a proxy for carbon sequestration) in carbon sequestration
studies. In a next step, the climatic variables influencing radial growth,
wood density and above-ground biomass increment are identified in
order to get insight in the drivers of the detected long-term changes. In
this way we are able to assess the consequences of climate change on
radial growth, wood density and aboveground biomass.

2. Material and methods

2.1. Sampling design

For this study 42 common beech (Fagus sylvatica) and 44 sessile oak
trees (Quercus petraea) were selected in four different broadleaved
forest sites located in the Belgian Ardennes (Table 1). Confounding
environmental factors were reduced to a minimum by selecting trees
growing in stands with similar soil conditions, slope and elevation.
Selected trees were located on well-drained brown acidic soil (WRB:
Dystric Cambisol). Elevation ranged from 260 to 400m above sea level
(m.a.s.l.) and slope from 0 to 5°. Selected trees were (co-)dominant,
growing in even-aged stands, and covered a wide range of develop-
mental stages (Table 2 for DBH range and Fig. S1).

2.2. Data collection

2.2.1. Wood density and tree-ring width data
Two cores, taken at 180° (North-South direction), per tree were

collected in the winter of 2014 with a 5mm increment corer (Suunto) at
1m above ground. After drying the tree cores in paper straws (24 h at
103 ± 1 °C), they were scanned at a resolution of 110 μm with the X-
ray CT scanner (NanoWood CT facility, Ghent University). X-ray CT
derived tree-ring data has been demonstrated to be sufficient to detect
long-term trends (Vannoppen et al., 2017). In order to extract wood
density data at an annual resolution, tree-ring boundaries were in-
dicated with the X-ray CT toolchain (De Mil et al., 2016). Afterwards,
TRWs were measured on cores, whose surface was cut with a micro-
tome and sanded, with a LINTAB 6 table at a resolution of 10 μm.
Crossdating was performed on both wood density and TRW data with
COFECHA in combination with Tsap-Win in order to ensure correctly
dated series (Holmes, 1983; Grissino-Mayer, 2001; Rinn, 2003).

2.2.2. Forest structural and site quality data
Forest structure and site quality was characterized by measuring

additional variables in circular plots (18m radius) established around

Table 1
Location and characterization of the four forest sites where trees were cored.

Site Coordinates Elevation (m.a.s.l.) Slope (°) Aspect Beech trees Oak trees

Marche-en-Famenne 50°27′N 5°6′E 400 5 South-east 5 10
Libin 50°6′N 5°1′E 360 5 North 13 11
Nassogne 50°6′N 5°3′E 260–300 0 – 17 14
Couvin 50°2′N 4°44′E 300 5 East 7 9

Table 2
General statistics summarized for TRW and wood density for beech and oak. Statistics are
calculated on the dataset after removal of juvenile growth (first 30 measured rings of each
tree) and starting from this year where data from at least 10 trees are available. sd:
standard deviation.

Variable Beech Oak

Number of trees 42 44
DBH range (cm) in 2014 31.0−82.5 27.5–87.5
Correlation wood density and Dp −0.32 (p < 0.001) −0.31 (p < 0.001)
Number of rings 2241 2937
Mean ± sd TRW (mm) 2.663 ± 1.278 1.771 ± 0.741
Mean ± sd wood density (kg/m3) 686 ± 49 642 ± 72
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every cored trees. FieldMap equipment and software (http://www.
fieldmap.cz) was used to measure dendrometrical variables in the
winter of 2014. Derived forest structural variables were: crown pro-
jection area of the cored tree (CPA, m2), height of the cored tree (H, m),
total CPA of trees with diameter at breast height (DBH)>15 cm in the
plot (TotCPA, m2), total basal area of trees with DBH>15 cm in the
plot (TotBA, m2), basal area of trees larger than the cored tree (BAL,
m2) and the ratio between the diameter of the cored tree and the
average diameter of trees with DBH>15 cm in the plot (ddg). CPA was
determined by mapping the crown edge in the four cardinal directions.
In each plot, a soil sample of the mineral soil was taken (depth range
from 10 to 15 cm) in the South-East direction relative to the cored tree.
pH (5:25 soil:solution, 0.01M CaCl2), organic C (OC, %) and N content
(dry combustion method), derived C/N ratio, bulk density (g/cm3) and
texture (fraction clay, loam and sand in %) were measured on the soil
sample to characterize the site quality in each plot.

2.2.3. Meteorological and other emission data
Daily data from the three nearest meteorological stations to each of

the four sites were used (Royal Meteorological Institute of Belgium,
RMI) to interpolate (using inverse-distance weighting) the climatic data
to each forest site for the period 1952 to 2014. Variables were rescaled
from daily to (i) monthly, (ii) seasonal and (iii) yearly variables.
Considered seasonal variables were: January to March (JFM), April to
August (AMJJA), May to July (MJJ), June to August (JJA), and
September to December (SOND). At the yearly scale the sum (SumYear)
and mean (MeanYear) of daily climate data were calculated. Following
daily climate data were available or derived: average cloud fraction
(CF, %), average relative humidity (RH, %), number of days with wind
speed higher than 40 km/hour (WS, number of days), cumulative pre-
cipitation (P, mm), cumulative potential evapotranspiration (PET, mm),
drought index (DRI= P-PET, mm), average maximum temperature
(Tmax, °C), average minimum temperature (Tmin, °C), average tem-
perature (Tav, °C), and number of days with Tmin lower than −8 °C
(frost, number of days). PET was calculated using the Thornthwaite
(1948) equation based on Tav and latitude of the forest sites. For the
period before 1952 data from the only available Belgian climatic station
at Ukkel were used. Monthly difference between forest site inverse
distance weighted climate data and Ukkel data for the period
1952–2014 was used to rescale Tmin, Tmax, Tav, P, RH and WS mea-
sured data in Ukkel before 1952.

Historical atmospheric deposition data of NHy (reduced nitrogen,
DepNHy, kg/ha), NOx (oxidized nitrogen, DepNOx, kg/ha), SOx (oxi-
dized sulfur, kg/ha), sum of DepNHy and DepNOx (nitrogen deposition,
DepN, kg/ha), and phyto-toxic ozone doze (POD1, mmol/m2) were
obtained from the EMEP dataset (Vieno et al., 2014). CO2 (ppm) con-
centration data modelled for the northern hemisphere based on NOAA
and AGAGE station data in combination with literature data were used
(Meinshausen et al., 2016). The atmospheric deposition and CO2 data
are available for the entire modeling period (i.e. 1925–2014 and
1927–2014, for oak and beech respectively).

2.2.4. Detection of long-term trends in radial growth, wood density and
biomass increment

Multilevel mixed models were used to model the long-term trends in
radial growth, wood density and above-ground biomass increment. BAI
was used as a proxy for stem increment:

BAIt= π(Rt
2− Rt-1

2)

where R is the tree radius at the end of the growing season (derived
from cumulative TRW measurements) and t the year of ring formation.
Above-ground biomass increment was estimated by an indicator for
above-ground biomass increment (IAB, g/cm), which was calculated as
the product of BAI and wood density at a yearly resolution for each
cored tree. Since it was demonstrated by Bontemps et al. (2010) that

long-term trends in radial growth are similar with trends in height
growth, the height dimension of above-ground biomass increment was
not taken into account.

For both beech and oak the same modeling strategy was applied on
BAI, wood density and IAB (hereafter referred to as response variables).
A natural log (ln) transformation of BAI and IAB data was needed to
deal with the heavily skewed distribution. The first thirty years of re-
sponse variables for each tree were eliminated from the analysis to
exclude the juvenile developmental stage. When including juvenile
growth the comparison of trees at a different developmental stage in a
specific year is difficult, given that juvenile growth can be suppressed
which was the case in part of the cored trees (Jump et al., 2006). In
addition, modeling was started from the year for which data from at
least ten trees were available (1936 and 1925 for beech and oak, re-
spectively).

Models were built in three stages according to Kint et al. (2012) and
Aertsen et al. (2014) (i) base model (Mb): describes response variable
as a function of tree development stage accounting for forest structure
and site quality, (ii) date model (Md): examines a possible common
source of variability related to calendar year, and (iii) environmental
model (Me): tests if climatic or other environmental variables can ex-
plain the inter annual and/or long-term variability. The previous-year
diameter (Dp, cm) was used as a proxy for developmental stage, since it
is known to be a better proxy for developmental stage compared to
cambial age (Wykoff, 1990; Mencuccini et al., 2005; Bontemps et al.,
2009). For the response variables, the relationship with Dp was de-
scribed by adding a linear (Dp) and quadratic (Dp2) effect of Dp. Only
the significant effects were retained in the final models.

For the first modeling step (base model), forest structural and site
quality variables were selected a priori using a multiple linear regres-
sion (only these forest structural and site quality variables with the
criteria variance inflation factor< 5 and Pearson correlation> 0.75
with the response variable were considered) (Zuur et al., 2009). The
selected forest structural and site quality variables for each response
variable for both beech and oak are presented in Table S2 (see Sup-
plementary material).

Next, the methodology of Zuur et al. (2009) was applied to de-
termine the optimal random and fixed effect structure. The optimal
random structure was determined by comparing nested models with
random intercept for forest site and tree; and random slope for Dp and
Dp2 (restricted maximum likelihood (REML) fitted models). Then, a
backward elimination of fixed effects (i.e. Dp, Dp2 and selected forest
structural and site quality variables) was used. A second-order auto-
regressive covariance structure for the error terms was added to the
model in order to deal with the autocorrelation present in the data (i.e.
growth and wood density in year t is related with year t-1). By doing
this, the estimates and confidence intervals of the model parameters are
not affected by the autocorrelation of the data (Pinheiro and Bates,
2000; Martin-Benito et al., 2011). The result of this first modeling step
are three base models (i.e. BAI, wood density and IAB) for both beech
and oak describing response variables in function of tree developmental
stage (characterized by including Dp and/or Dp2) and local conditions
(characterized by forest structure and site quality variables). As the
base models are an intermediate modeling step they are not reported in
this paper.

Mb: responsefs,i,t = α+ β Ti,t + γ Fi+ δ Si+ ai+ bi Ti,t + cfs+ dfsTi,t

+ ξfs,i (1)

where responsefs,i,t is the response of tree i in year t located in forest site
fs; Ti,t is a vector related to the tree’s development stage (Dp and/or
Dp2). By including this in both fixed and random parts, both common
and individual tree growth trajectories are modeled; α and β are in-
tercept and slope related to Ti,t; ai and bi are tree specific random in-
tercept and slope related to Ti,t; cfs and dfs are forest site specific random
intercept and slope related to Ti,t; Fi and Si are the vectors of the
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preselected forest structural variables and site quality variables; γ and δ
are the associated fixed effect estimates related to Fi and Si; and finally
ξfs,i is the error term.

Changes of the response variable through time caused by overall
long-term trends were not included in the base models. Therefore, in
the second modeling step (date model) it was tested if a linear,
quadratic, cubic or natural cubic spline term of calendar year could be
added as a fixed effect to the base models.

Md: Md=Mb+ λ Yi (2)

where λ is the vector of fixed effects estimated associated to calendar
year. The date model allowed studying overall long-term trends in the
response variables caused by exogenous factors operating at a broad
geographical scale.

Climate and emission variables can explain year-to-year and/or
long-term variability of the response variables. Therefore in the third
modeling step (environmental model) climate and emission variables
were added as fixed effects to the date models of BAI, wood density and
above-ground biomass increment. This modelling step allowed seeing
which climatic conditions affect radial growth, wood density and
above-ground biomass increment.

Me: Me=Md+ μ Ci,t + θ Cti,t + ϑ Oi,t (3)

where Ci,t is a vector of climate variables characterizing the year-to-
year changes in climatic conditions of current year and previous year
(PY). A priori, possible Ci,t variables were selected by selecting those
variables that have a significant correlation with detrended BAI, wood
density and IAB data, respectively. Cti,t is a vector of climate variables
characterizing the long-term changes in climate conditions. Cti,t was
calculated for the a priori selected climate variables (i.e. Ci,t variables)
by applying a local smoothing function (loess, with polynomial de-
gree= 1) to the considered climate variables. Oi,t is a vector with
emission variables: DepNHy, DepNOx, DepN, DepSOx, DOP and CO2.
Vectors μ, θ and ϑ gives the fixed effects associated with Ci,t, Cti,t and
Oi,t, respectively. It can be that in this final modeling step the fixed
effect Y becomes no longer significant, indicating that Ci,t, Cti,t and Oi,t

are driving changes in the response variable.
For beech, an additional model for wood density was built in order to

test if wood density changes independently of radial growth changes.
This was done by building a mixed model of wood density with an in-
teraction of ln(BAI) and Dp as fixed factor, a random intercept for tree
and a random slope for ln(BAI):Dp. Similarly as in the date models, a
second order autocorrelation structure was added to account for the

autocorrelation present in the data. In a second step, we tested if a linear,
quadratic, cubic or natural cubic spline term of calendar year could be
added to the model. Since no long-term changes in wood density were
found for oak we did not build such a model for that species.

For the selection of the optimal fixed and random effect structure, a
likelihood ratio test was applied to nested models and Akaike and
Bayesian Information criteria (AIC and BIC) were compared. Final
models were fitted with restricted maximum likelihood (REML) and
their model performance was evaluated with pseudo-R2 of full and
marginal model (i.e. only considering fixed effects) and relative root
mean squared error (rRMSE, calculated for response). The pseudo-R2

was calculated as the correlation between the response and model
predictions. All statistics were performed in R (version 3.2.5) (R
Development Core Team, 2016) with packages “nlme”, “spline” and
“dplr” (Bunn, 2008; Hothorn et al., 2008; Pinheiro et al., 2016).

3. Results

3.1. General statistics

In Table 2 general statistics of measured TRW and wood density is
summarized. The TRW of beech trees is greater compared to oak (p-
value< 0.001). Also, the average wood density is higher in beech trees
compared to oak (p-value< 0.001). Table S1 gives an overview of some
forest structure and site quality variables for the four forest sites for
both beech and oak.

3.2. Models

Pearson correlation between the random components and tree age
are not significant (p-value> 0.001) for all the models. This guarantees
that the tree age effect on the response variables is well captured by
adding Dp as a fixed effect in the models. A significant correlation
between random components and tree age would indicate that the re-
sponse variable is modelled differently for trees with different age
which could obscure part of the long-term trend.

3.3. Date models

The parameter estimations and model evaluation of the date
models, which describe long-term variability of BAI, wood density and
IAB with calendar year, for both beech and oak are presented in Tables
3 and 4, respectively. A random intercept for tree and a random slope

Table 3
Parameter estimates and model evaluation of the date models with response variables ln(BAI), wood density and ln(IAB) for beech.

ln(BAI), [cm2] (n= 2241) wood density, [kg/m3] (n= 2226) ln(IAB), [g/cm] (n= 2226)

Fixed effects Estimate SE Df p > |t| Estimate SE Df p > |t| Estimate SE Df p > |t|

(Intercept) −10.0804 3.8485 2196 0.0089 2384730.5 1019802.6 2180 0.0195 −13.3262 4.3325 2181 0.0021
Dp 0.0869 0.0086 2196 <0.0001 −1.3 0.5 2180 0.0055 0.0876 0.0092 2181 <0.0001
Dp2 −0.0009 0.0001 2196 <0.0001 −0.0009 0.0001 2181 <0.0001
C/N −0.0572 0.0172 40 0.0019 −0.0555 0.0194 40 0.0067
year 0.0063 0.0019 2196 0.0011 −3630.4 1547.2 2180 0.0190 0.0077 0.0022 2181 0.0003
year2 1842.5 782.4 2180 0.0186
year3 −0.3 0.1 2180 0.0182

Random effect tree Intercept Dp error Intercept Dp error Intercept Dp error

0.6575 0.0182 0.4101 45.8376 1.6407 29.6230 0.6897 0.0201 0.4320

Model evaluation R2f R2m rRMSE AIC R2f R2m rRMSE AIC R2f R2m rRMSE AIC

0.67 0.38 12% 1945 0.68 0.11 4% 20712 0.64 0.30 15% 2125

BAI (basal area increment), IAB (indicator for above-ground biomass increment), Dp (previous year diameter, cm), C/N (ratio C/N measured in soil sample), year2 is (year2/1000), year3

is (year3/1000), R2f (pseudo- R2 of the full model), R2m (pseudo- R2 of the marginal model), rRMSE (relative root mean squared error) and AIC (Akaike Information Criteria).
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associated with Dp was identified as the optimal random structure for
the three response variables for both studied tree species. Since for none
of the models the random intercept forest site improved the model
performance, it is not included in the models. For both beech and oak
wood density models, a negative estimate is associated with fixed effect
Dp, indicating that wood density decreases as the tree matures, in line
with the increased tree height and hydraulic system requirements (Fig.
S2). Adding Dp2 as a fixed effect to the density models of both beech
and oak did not improve the model and is thus not included in the final
models. A quadratic relation with tree developmental stage with BAI
and IAB is given by the positive and negative estimates for Dp and Dp2.
This is expected as tree growth is known to increase until a certain
maximum is reached, whereafter tree growth starts to decline (Fig. S2).
The site quality variable C/N is included as a fixed effect in the date
models for BAI and IAB for beech. The associated negative effect in-
dicates that both BAI and IAB of beech decreases with higher soil C/N
values. For oak, the forest structural variable BAL is included in the BAI
date model with a negative estimate, reflecting a competition effect on
radial growth. In the IAB date model for oak, site quality variable OC is
included in the model with a negative estimate, oak trees growing on
soils with higher OC content have thus a lower IAB. No forest structural
or site quality variables are included as fixed effects in the beech and
oak date model for wood density. Thus, other variables are driving
wood density in both tree species.

The overall (i.e. for all trees) long-term effect of calendar year on
response variables as described by the date models, can be visualized by
plotting the response through time under constant growth conditions
(site quality and forest structural variables, if any included as fixed
effects) and for a fixed developmental stage (for beech and oak median
values from 1936 and 1925 respectively are taken), see full line in
Figs. 1 and 2. Note that by including Dp as a fixed effect in the models,
the effect of increasing number of older trees with time in the dataset
and their higher radial growth and lower wood density (compared to
younger trees) is filtered out. The random effect Dp will allow the re-
lationship between growth-Dp and wood density-Dp to vary for each
tree. This modeling strategy assures that the detected long-term effect
of calendar year is minimally influenced by effects of the tree’s devel-
opmental stage (Dp).

Year is included as a fixed effect with a positive estimate in the BAI
date model of beech, beech BAI increased 63.2% in the study area for
the period 1936 and 2014. In the wood density model for beech a cubic
effect of calendar year indicates a minimal decrease (−0.35%, wood

density 1946 relative to 1936) in wood density until 1946, afterwards
wood density increases slightly (2.8%, wood density in 1996 relative to
1946) with a maximum reached in 1996. From 1996 onwards wood
density starts to decline again, in 2014 the same wood density as in
1958 is reached. Overall wood density of beech increases with 1.1%
during the period between 1936 and 2014. As expected, since for both
BAI and wood density a long-term increase was found, IAB of beech also
increases for the period 1936 and 2014. The estimate of year in the IAB
model is higher compared to the BAI model. Overall, an increase of
beech IAB of 82.9% was found for the period 1936–2014.

For oak, a cubic effect of calendar year is included in the models of
BAI and IAB. BAI and IAB decreased until the 1950’s; afterwards they
increased until the 2000’s whereafter they decline again. Note that the
estimates of the cubic effect of calendar year are very similar for the
models of BAI and IAB. Overall, an increase of oak BAI of 9.3% and a
slight decrease of IAB −1.9% was found for the period 1925–2014.
Since year is not included in the optimal wood density model no overall
long-term trend in wood density is found in oak trees.

The R2f (pseudo-R2 of the full model) of date models are relatively
high, indicating a good fit. The pseudo-R2 of the marginal models, R2m,
are low indicating that the fixed effects could not explain a large part of
the variability of the response variables and it was thus captured by the
random effects. This is particularly the case for the wood density and
IAB date model of oak. The rRMSE is comparable and acceptably low
for all six models. Note that the number of observations is lower in the
wood density model; this is because some rings were too small to
measure wood density accurately or because of mineral inclusions in
some rings which influence the measured wood density (Vansteenkiste
et al., 2007).

The estimates and model performance of the beech wood density
model where radial growth change is taken into account are presented
in Table 5. In Fig. 3 the model is visualized, the full line represents the
modelled change in wood density through time for a tree with fixed Dp
and BAI (median values of Dp and ln(BAI) values from 1936 are taken).
A decrease in wood density of −6% is modelled from 1925 to 2014 for
a tree with constant Dp and BAI (median values from 1936 are taken).
Note that the value of the observed median wood density (dotted line)
is slightly different compared to the wood density model presented in
Fig. 1. This is because values are presented relative to the 1936 pre-
dicted wood density, which is different for the two models visualized in
Figs. 1 and 3.

Table 4
Parameter estimates and model evaluation of the date models with response variables ln(BAI), wood density and ln(IAB) for oak.

ln(BAI), [cm2] (n=2937) wood density, [kg/m3] (n= 2922) ln(IAB), [g/cm) (n=2876)

Fixed effects Estimate SE Df p > |t| Estimate SE Df p > |t| Estimate SE Df p > |t|

(Intercept) 28373.727 6317.938 2888 <0.0001 728.6196 9.3866 2877 <0.0001 28042.662 7174.0800 2828 0.0001
Dp 0.06 0.009 2888 <0.0001 −2.3596 0.3107 2877 <0.0001 0.0635 0.0100 2828 <0.0001
Dp2 −0.001 0.0001 2888 <0.0001 −0.0008 0.0002 2828 <0.0001
BAL −0.275 0.078 42 0.0010
OC −0.0870 0.0240 41 0.0009
year −43.09 9.608 2888 <0.0001 −42.5455 10.9110 2828 0.0001
year2 21.81 4.870 2888 <0.0001 21.5136 5.5310 2828 0.0001
year3 −0.004 0.001 2888 <0.0001 −0.0036 0.0010 2828 0.0001

Random effect tree Intercept Dp error Intercept Dp error Intercept Dp error

0.7406 0.0242 0.3335 41.4709 1.5101 46.9754 0.7212 0.0274 0.3868

Model evaluation R2f R2m rRMSE AIC R2f R2m rRMSE AIC R2f R2m rRMSE AIC

0.64 0.13 11% 1196 0.605 0.093 7% 30016 0.57 0.00067 15.00% 2063

BAI (basal area increment), IAB (indicator for above-ground biomass increment), Dp (previous year diameter, cm), BAL (basal area of trees larger than cored tree, m2), OC (soil organic C,
%), year2 is (year2/1000), year3 is (year3/1000), R2f (pseudo- R2 of the full model), R2m (pseudo- R2 of the marginal model), rRMSE (relative root mean squared error) and AIC (Akaike
Information Criteria).
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3.4. Environmental models

The result of the addition of environmental variables as fixed effects
to the BAI and wood density models is presented in Tables 6 and 7, for
beech and oak, respectively. Since for some climate variables ob-
servations are missing in some years, the number of observations of the
environmental models is lower compared to the date models (Tables 3
and 4). No variables characterizing trends in climate variables (Cti,t) are
included in the final environmental models. Only for the radial growth
model of beech, inclusion of the environmental variables resulted in
non-significance of the calendar year included in the date model.
Though, for all models the addition of the environmental variables
explains part of the year-to-year variation of the response variables
resulting in better performing models compared to the date models
(Tables 3 and 4 compared to Tables 6 and 7).

Positive estimates of CF in June (CF_June), DRI from January to
March (DRI_JFM) and DRI from April to August (DRI_AMJJA) in the
beech radial growth environmental model, indicate that beech radial
growth is negatively affected by drought during the growing season and
dormant season. Besides, the inclusion of: Tmax in July of the previous
year (PY_Tmax_July), P from May to July of the previous year
(PY_P_MJJ), RH of the previous year (PY_RH_MeanYear) and CF from
June to August of the previous year (PY_CF_JJA) indicates that current
year radial growth is affected by previous year drought conditions. CO2

and POD1 are included with a positive and negative estimate in the
beech radial growth environmental model, respectively. The variables
included in the beech wood density environmental model with a posi-
tive estimate are: CF in March of the previous year (PY_CF_March), DRI
from May to July of the previous year (PY_DRI_MJJ) and P in October of
the previous year (PY_P_October). PET from June to August in the
previous year (PY_PET_JJA) and DepN are included with a negative
estimate in the beech wood density environmental model.

For oak, the radial growth is positively influenced by P from
January to August (P_JFMAMJJA), Tav in May (Tav_May), Tmin in May
of the previous year (PY_Tmin_May) and DepNOx, and negatively by
the number of days where Tmin is lower than −8 °C in February
(frost_February). In the oak wood density environmental model,
frost_February is also included with a negative estimate as well as the
number of days where Tmin is lower than −8 °C in February of the
previous year (PY_frost_February). P in April (P_April), cumulative P of
the previous year (PY_P_SumYear), RH in May of the previous year
(PY_RH_May) and Tmax in February (Tmax_February) positively influ-
ence oak wood density. The environmental IAB models contain similar
climatic variables as the wood density and BAI environmental models
for beech and oak, which is expected since IAB is calculated as the
product of BAI and wood density (for the IAB environmental models,
see Supplementary material Tables S3 and S4).

4. Discussion

4.1. Long-term radial growth, wood density and above-ground biomass
increment trends in beech

For beech growing on the Ardennes plateau, a long-term radial
growth increase (63.2%) is observed during the period between 1936
and 2014 (Fig. 1 and Table 3). This is in contrast with the recent radial
growth decline detected since the 1960s in beech trees growing in the
North of Belgium by Kint et al. (2012), but is in line with studies in
other European upland regions (Lorraine, Vosges mountains, Middle
and Central Germany, Albania and Macedonia in Badeau et al., 1996;
Bontemps and Esper, 2011; Pretzsch et al., 2014; Tegel et al., 2014).
Drought and high N deposition were identified as drivers of growth
decline of beech growing in the densely populated lowland of Flanders,
North of Belgium (Kint et al., 2012), and compared to this area, the

Fig. 1. Modelled 20th century change in BAI (a),
wood density (b) and IAB (c) of beech, using the date
model. The dashed line represents the observed
median response variable (i.e. BAI, wood density and
IAB). The dotted line represents the predicted re-
sponse using median yearly predictor values. The full
line represents the long-term trend of a tree with
constant C/N (for BAI and IAB model) and Dp
(median values from 1936 are taken). Values are
presented relative to the 1936 predicted response
values.
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Belgian Ardennes have more rainfall and higher summer air humidity,
and received less N deposition over time. It seems that for the time
being, beech trees in the Ardennes mainly took profit from global
change through improved levels of CO2 concentration, air temperature
and nitrogen nutrition. Also a long-term increase of IAB (82.9%) is
observed (Fig. 1 and Table 3) for that same period, which is sub-
stantially higher than the modelled long-term increase in radial growth
(63.2%). This higher long-term increase is also suggested by the higher
estimate for the calendar year effect in the IAB compared to the BAI
model (year in Table 3). The observed increase in IAB is mostly

attributable to the increase in radial growth (63.2%), rather than to the
much lower increase in wood density (1.1%) when looking at the period
1936–2014. Nevertheless, the results show that ignoring wood density
changes leads to a substantial underestimation of long-term trends in
IAB.

Wood density of a tree ring with a particular BAI decreases over
time (see Table 7 and Fig. 3). For a tree at a fixed Dp and BAI, a de-
crease in wood density of −6% is modelled. This is in line with
Bontemps et al. (2013) who also reported a decreasing trend of the
same magnitude (−7.5%) on beech trees in France at constant ring

Fig. 2. Modelled 20th century change in BAI (a), wood
density (b) and IAB (c) of oak, using the date model.
The dashed line represents the observed median re-
sponse variable (i.e. BAI, wood density and IAB). The
dotted line represents the predicted response using
median yearly predictor values. Full line represents
the long-term trend of a tree with constant BAL and
OC (for BAI and IAB model respectively) and Dp
(median values from 1925 are taken). Values are
presented relative to the 1925 predicted response va-
lues.

Table 5
Parameter estimates and model evaluation of the wood density model for beech where the interaction of ln(BAI) with Dp is included as a fixed effect.

wood density beech, [kg/m3] (n=2226)

Fixed effects Estimate SE Df p > |t|

(Intercept) 2112857.2000 966086.8000 2178 0.0288
ln(BAI) 9.5000 3.7000 2178 0.0100
Dp −2.4000 0.4000 2178 0.0000
year −3212.4000 1465.6000 2178 0.0285
year2 1628.7000 741.1000 2178 0.0281
year3 −0.3000 0.1000 2178 0.0277
ln(BAI):Dp 0.4000 0.1000 2178 0.0000

Random effects Intercept log(BAI):Dp error

36.5043 0.1232 27.5786

Model evaluation R2f R2m rRMSE AIC

0.72 0.21 4% 20366

BAI (basal area increment), Dp (previous year diameter), year2 is (year2/1000) and year3 is (year3/1000), R2f (pseudo- R2 of the full model), R2m (pseudo- R2 of the marginal
model), rRMSE (relative root mean squared error) and AIC (Akaike Information Criteria).
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width and tree radius. These findings suggest that an anatomical shift in
wood formation driven by changes in the environment took place over
time. An anatomical shift can be caused by changes in the composition
of wood or a change in cell arrangements and characteristics (Bergès
et al., 2000; Fonti et al., 2010). However, the decrease in wood density
for tree-rings with a fixed BAI does not result in a long-term decrease in
wood density over time. Overall wood density of beech trees increases
(1.1%) for the period between 1936 and 2014.

4.2. Climatic factors influencing radial growth and wood density of beech

The environmental model, where environmental factors are added
to the models that describe variability of BAI and wood density with
calendar year, indicates that beech radial growth is limited by water
availability (influenced by P and soil properties) and drought (resulting
from a combination of low P, high T and low RH over a prolonged
period) (Table 6). This is not surprising since beech is known to be
sensitive to water availability and drought (Jump et al., 2006; Piovesan
et al., 2008; Charru et al., 2010; Scharnweber et al., 2011; van der
Maaten, 2012; Michelot et al., 2012; Kint et al., 2012). Note that the
negative effect of drought and water shortage increases with increasing
tree size (Rötzer et al., 2017). Köcher et al. (2009) has shown a decrease
in sap flux and leaf water potential during drought in beech trees. The
negative effect of previous year drought on radial growth can be ex-
plained by the dependency of current year growth on the carbohydrate

reserve (Skomarkova et al., 2006; Richardson et al., 2013). The nega-
tive effect of previous year drought or water availability on wood
density of beech (Table 6) can be explained by the decrease in soluble
carbohydrate reserve in the years following drought. Overall, the year-
to-year variability in wood density is more determined by the previous
year weather conditions, while radial growth is more determined by
current year climate variables (Table 6).

The climate variables related to drought or water availability in-
cluded in the environmental model of beech radial growth and wood
density are not included as trends, indicating that they mainly explain
the year-to-year variability in growth and wood density. Since a posi-
tive growth trend was detected, the negative effect of drought is cur-
rently overcompensated by other external factors that enhance radial
growth, though this might change in the future since drought events
will increase due to climate change (IPCC, 2013). Current and expected
trends of the climate variables included in the models are indicating
that drought might negatively affect radial growth and wood density of
beech in the future (Tricot et al., 2015). Especially for PY_RH_Mean-
Year, which is included in the growth model with a positive estimate, a
clear decreasing trend through time is visible, which might negatively
affect growth in the future (see Fig. S3., Supplementary material).
When BAI and wood density are combined (i.e. environmental model of
IAB), we already see the negative effect of decreasing trend in RH on
IAB (negative estimate for Trend_RH_MeanYear in Table S3).

The increasing trend in POD1 and CO2 is influencing beech radial

Fig. 3. Visualization of beech wood density model
with radial growth change taken into account. The
dashed line represents the observed median wood
density. The dotted line represents the predicted wood
density using median yearly predictor values. Full line
represents the long-term trend of a tree with constant
ln(BAI) and Dp (median values from 1936 are taken).
Presented values are relative to the 1936 predicted
wood density values.

Table 6
Parameter estimates and model evaluation of the environmental models with response variables ln(BAI) and wood density for beech.

ln(BAI), [cm2] (n= 2220) wood density, [kg/m3] (n= 2222)

Fixed effects Estimate SE Df p > |t| Fixed effects Estimate SE Df p > |t|

(Intercept) −2.3990 0.7142 2167 0.0008 (Intercept) 3926006 1034560.00 2171 0.0002
Dp 0.1000 0.0090 2167 <0.0001 Dp −1.3130 0.4670 2171 0.0050
Dp2 −0.0010 0.0001 2167 <0.0001 year −5988.766 1570.6578 2171 0.0001
C/N −0.0536 0.0156 40 0.0014 year2 3045.164 794.8123 2171 0.0001
CF_June 0.0093 0.0007 2167 <0.0001 year3 −0.516 0.1341 2171 0.0001
DRI_JFM 0.0004 0.0001 2167 <0.0001 PY_CF_March 0.2453 0.0445 2171 <0.0001
DRI_AMJJA 0.0009 0.0001 2167 <0.0001 PY_DRI_MJJ 0.075 0.0064 2171 <0.0001
PY_P_MJJ 0.0006 0.0001 2167 <0.0001 PY_P_October 0.0411 0.0104 2171 0.0001
PY_Tmax_July −0.0190 0.0039 2167 <0.0001 PY_PET_JJA −0.1469 0.0279 2171 <0.0001
PY_RH_MeanYear 0.0128 0.0044 2167 0.0039 DepN −1.3812 0.3085 2171 <0.0001
PY_CF_JJA 0.0118 0.0014 2167 <0.0001
CO2 0.0074 0.0013 2167 <0.0001
POD1 −0.0212 0.0051 2167 <0.0001

Random effects Intercept Dp error Random effects Intercept Dp error

0.6810 0.0188 0.3818 49.7102 1.7401 28.4921

Model evaluation R2f R2m rRMSE AIC Model evaluation R2f R2m rRMSE AIC

0.72 0.44 11% 1470 0.71 0.12 4% 20388

BAI (basal area increment), Dp (previous year diameter, cm), C/N (ratio C/N measured in soil sample), year2 is (year2/1000) and year3 is (year3/1000), PY (previous year), CF (cloud
fraction, %), P (precipitation, mm), PET (potential evapotranspiration, mm), DRI (P-PET, mm), Tmax (maximum temperature, °C), RH (relative humidity, %), CO2 (ppm), POD1 (phyto-
toxic ozone doze, mmol/m2), DepN (sum reduced and oxidized N deposition on deciduous trees, kg/ha), JFM (January to March), AMJJA (April to August), MJJ (May to July), JJA (June
to August), R2f (pseudo- R2 of the full model), R2m (pseudo- R2 of the marginal model), rRMSE (relative root mean squared error) and AIC (Akaike Information Criteria).
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growth negatively and positively, respectively (Table 6). The negative
effect of POD1 on beech radial growth was expected since the critical
POD1 level of 4mmol/m2 for beech as determined by Mills et al. (2011)
was exceeded in the four forest sites since 1936. Negative effects of
ozone concentration on the radial growth of beech, caused by cellular
damage of ozone and consequently reducing biomass production, has
already been demonstrated (Matyssek et al., 2010; Ainsworth et al.,
2012). An ozone fumigation experiment by Pretzsch et al. (2010), de-
monstrated that even the annual radial growth, allocation pattern and
stem form of beech trees is altered when double of the ambient ozone
concentration is fumigated, resulting in a decreases of 10.2 m3/ha/y in
biomass increment for beech. Since the fixed effect of year was no
longer significant in the environmental model, compared to the date
model, this suggests that the rising CO2 is causing the increase in radial
growth of beech trees over time (Tables 3 and 5). However, the in-
creasing radial growth is probably the result of direct and indirect ef-
fects of increased CO2. The fertilization effect of CO2 on tree growth is
complex since factors as increased drought, nutrient limitation and
acclimatization to elevated CO2 might alleviate the CO2 fertilization
effect (Körner et al., 2005; Peñuelas et al., 2011; Ainsworth et al.,
2012). Note that also stand density might have changed over time and
may explain the observed positive long-term trend in BAI, un-
fortunately no data are available to test this.

The negative effect of DepN deposition on the wood density of
beech can be caused by the effect N has on the xylem properties as was
already demonstrated in some studies (Blaschke et al., 2002; Borghetti
et al., 2017; Kostiainen et al., 2004). This negative effect of DepN on
wood density might suggest that increasing DepN might affect carbon
sequestration negatively in the future opposed to what is suggested by
Magnani et al. (2007). On the other hand increasing DepN may result in
a hydraulic structure that is more cavitation resistant which might be
better in the long run (Borghetti et al., 2017). For the period 1936–2014
other environmental factors then DepN and CO2 seem to influence the
long-term trend in above-ground biomass increment of beech in the
Belgian Ardennes (Table S3).

4.3. Long-term radial growth, wood density and above-ground biomass
increment trends in oak

For oak, a radial growth decline of 18.7% is observed between 1925
and 1948 (Fig. 2). This radial growth decline is in line with other lit-
erature where extreme winter frost, drought and insect outbreaks were
identified as growth decline drivers (Delatour, 1983; Thomas et al.,
2002). From 1948–2004, radial growth increases with 31.7%, followed
by another radial growth decline (3.7% from 2004 to 2014). No long-
term trends are detected in wood density. A divergence between wood
density and radial growth long-term trends was also observed by Bergès
et al. (2000) on sessile oak in France. This divergence is also confirmed
by Fig. S2, where no clear relationship between BAI and wood density is
visible for oak. Though Bergès et al. (2000) found a long-term increase
of radial growth in combination with a decrease in wood density and
not a long-term increase of radial growth in combination with no long-
term trends in wood density as is the case in this study. The observed
long-term trend in IAB follows the same pattern as the observed long-
term radial growth trend. From 1925–1951 a decrease (23.4%) in IAB is
modelled, afterwards IAB increases again until 2005 (24.3% increase
from 1951 to 2005). From 2005 onwards, IAB decreases again (2.8%
decrease from 2005 to 2014). However, the long-term trend in BAI
differs from IAB. From 1925–2014 an overall increase (9.3%) in oak
radial growth is modelled opposed to a slight decrease (-1.9%) in IAB.
The pattern of the long-term trend in IAB for oak is thus dominated by
the long-term trend in oak radial growth but wood density affects the
long-term trend in IAB.

4.4. Climatic factors influencing radial growth and wood density of oak

Compared to radial growth, wood density is more influenced by
previous year and pre-growing season climate variables (Table 7) (for
oak, the growing season starts around mid-April, Campioli et al., 2012).
This can be explained by the dependence of current year earlywood
formation on the carbohydrates reserves stored during previous year
latewood formation (Richardson et al., 2013; Delpierre et al., 2016).
Since no photo assimilates are present because oak tree growth starts

Table 7
Parameter estimates and model evaluation of the environmental models with response variables ln(BAI) and wood density for oak.

ln(BAI), [cm2] (n= 2936) wood density, [kg/m3] (n= 2901)

Fixed effects Estimate SE Df p > |t| Fixed effects Estimate SE Df p > |t|

(Intercept) 20989.7130 7258.2020 2882 0.0039 (Intercept) 581.1278 14.6568 2850 <0.0001
Dp 0.0597 0.0090 2882 <0.0001 Dp −2.4990 0.3215 2850 <0.0001
Dp2 −0.0008 0.0000 2882 <0.0001 frost_February −0.7377 0.2021 2850 0.0003
BAL −0.3012 0.0790 42 0.0004 P_April 0.0994 0.0178 2850 <0.0001
year −31.7929 11.0670 2882 0.0041 PY_frost_February −1.0317 0.1356 2850 <0.0001
year2 16.0502 5.6250 2882 0.0044 PY_P_SumYear 0.0235 0.0041 2850 <0.0001
year3 −0.0027 0.0010 2882 0.0046 PY_RH_May 1.5558 0.1279 2850 <0.0001
P_JFMAMJJA 0.0004 0.0000 2882 <0.0001 Tmax_February 2.0962 0.3431 2850 <0.0001
frost_February −0.0064 0.0010 2882 <0.0001
Tav_May 0.0418 0.0030 2882 <0.0001
PY_Tmin_May 0.0443 0.0040 2882 <0.0001
DepNOx 0.0205 0.0080 2882 0.0078

Random effects Intercept Dp error Random effects Intercept Dp error

0.739 0.024 0.311 41.476 1.574 44.237

Model evaluation R2f R2m rRMSE AIC Model evaluation R2f R2m rRMSE AIC

0.70 0.14 10% 878 0.66 0.13 7% 29425

BAI (basal area increment), Dp (previous year diameter, cm), BAL (basal area trees larger then target tree, m2), year2 is (year2/1000) and year3 is (year3/1000), PY (previous year), P
(precipitation, mm), frost_February (number of days in February where minimum temperature is below −8 °C), Tmin (minimum temperature, °C), Tmax (maximum temperature, °C), RH
(relative humidity, %), DepNOx (oxidized N deposition on deciduous trees, kg/ha), JFMAMJJA (January to August), SumYear (cumulative sum for each year), R2f (pseudo- R2 of the full
model), R2m (pseudo- R2 of the marginal model), rRMSE (relative root mean squared error) and AIC (Akaike Information Criteria).
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before bud burst this is the case here (Michelot et al., 2012; Kimak and
Leuenberger, 2015). Unfavorable growth conditions in previous year
thus result in low earlywood formation because of low availability of
stored carbohydrates. Low earlywood formation affects the water
transport negatively resulting in low latewood formation (with high
density) which results in lower wood density (Pérez-de-Lis et al., 2016).

Late frost affects both BAI and wood density negatively, for wood
density even the late frost of the previous year is influencing current
year wood density (see fixed factors PY_frost_February and
frost_February in Table 7). Also, the positive effect of maximum tem-
peratures in February on wood density indicates the importance of the
effect of late frost. Sessile oak is known to be vulnerable to embolism of
large xylem vessels, with negative consequences for water flow, caused
by late frost (Barbaroux and Bréda, 2002). Since oak tree growth starts
before leaf unfolding, and thus no transpiration drives water flow yet,
each spring, the water flow pathway needs to be reconstructed. Severe
late frost will result in high embolism and thus requires large invest-
ments for water flow restoration resulting in lower growth and wood
density (Barbaroux and Bréda, 2002).

Oak radial growth is positively influenced by precipitation from
January to August, indicating that water availability has a positive ef-
fect on oak growth. This positive effect of water availability was also
found in other studies on oak growth (Kelly et al., 2002; Kint et al.,
2012). The positive effect of May temperatures of previous and current
year on radial growth is in line with previous research (Lindner et al.,
2010). Our results indicate that nitrogen has a positive effect on the
growth of sessile oak (Table 7). This is in line with previous research
that indicated that for deciduous trees in the south of Belgium the
critical nitrogen load is not yet reached (Ceulemans and Nijs, 2004).

4.5. Consequences of trends in radial growth and wood density on above-
ground biomass increment

For both beech and oak, the long-term variability in IAB is mostly
driven by the variability in radial growth rather than the long-term
trend in wood density. Though, the assumption that wood density is
constant in most carbon sequestration studies is not correct and may
result in over- or underestimation of C storage capacity of forests. For
beech, models indicate that ignoring wood density in above-ground
biomass increment estimation results in an underestimation of the long-
term trend in above-ground biomass increment for the period
1936–2014. For oak, ignoring wood density in long-term above-ground
biomass increment results in an overestimation of the stored above-
ground biomass increment for the period 1925–2014. For both beech
and oak the observed long-term trend in BAI is higher compared to the
trend in wood density, which might suggest that climate change is
impacting BAI more than wood density. The environmental models
(Tables 6 and 7) indicate that different climate variables are influencing
wood density and radial growth, where wood density is more influ-
enced by previous year parameters, whereas radial growth is more in-
fluenced by current year climate. This finding supports recent research
that suggest a lag between cell enlargement (influencing radial growth)
and cell wall thickening (influencing wood density) and that these xy-
logenesis processes are influenced by different environment conditions
and use stored carbohydrates which are also climate sensitive (Cuny
et al., 2015; Delpierre et al., 2016; Guillemot et al., 2017; Pérez-de-Lis
et al., 2017). Also forest age, which is influenced by the forest man-
agement, should be considered when assessing the carbon storage ca-
pacity of forests since both radial growth and wood density in both
beech and oak are influenced indirectly by tree age (i.e. effect of Dp and
Dp2 in models). The negative relationship between wood density and
Dp is the result of increasing tree height when trees age and not the
result of tree aging per se. In order to maintain water supply the lumen
area increases, resulting in a decrease in wood density, when trees grow
taller (Carrer et al., 2015).
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