153 research outputs found

    α-Helical conformation in the C-terminal anchoring domains of E. coli penicillin-binding proteins 4, 5 and 6

    Get PDF
    AbstractThe E. coli low molecular mass penicillin-binding proteins (PBP's) are penicillin sensitive, enzymes involved in the terminal stages of peptidoglycan biosynthesesis. These PBP's are believed to anchor to the periplasmic face of the inner membrane via C-terminal amphiphilic α-helices but to date the only support for this hypothesis has been obtained from theoretical analysis. In this paper, the conformational behaviour of synthetic peptides corresponding to these C-terminal anchoring domains was studied as a function of solvent, pH, sodium dodecyl sulphate micelles and phospholipid (DOPC, DOPG) vesicles using circular dichroism (CD) spectroscopy. The CD data showed that in 2,2,2-trifluoroethanol or sodium dodecylsulphate, all three peptides have the capacity to form an α-helical conformation but in aqueous solution or in the presence of phospholipid vesicles only those peptides corresponding to the PBP5 and PBP6 C-termini were observed to do so. A pH dependent loss of α-helical conformation in the peptide corresponding to the PBP5 C-terminus was found to correlate with the susceptibility of PBP5 to membrane extraction. This correlation would agree with the hypothesis that an α-helical conformation is required for membrane interaction of the PBP5 C-terminal region

    PEGylated graphene oxide for tumor-targeted delivery of paclitaxel.

    Get PDF
    AIM: The graphene oxide (GO) sheet has been considered one of the most promising carbon derivatives in the field of material science for the past few years and has shown excellent tumor-targeting ability, biocompatibility and low toxicity. We have endeavored to conjugate paclitaxel (PTX) to GO molecule and investigate its anticancer efficacy. MATERIALS & METHODS: We conjugated the anticancer drug PTX to aminated PEG chains on GO sheets through covalent bonds to get GO-PEG-PTX complexes. The tissue distribution and anticancer efficacy of GO-PEG-PTX were then investigated using a B16 melanoma cancer-bearing C57 mice model. RESULTS: The GO-PEG-PTX complexes exhibited excellent water solubility and biocompatibility. Compared with the traditional formulation of PTX (Taxol®), GO-PEG-PTX has shown prolonged blood circulation time as well as high tumor-targeting and -suppressing efficacy. CONCLUSION: PEGylated graphene oxide is an excellent nanocarrier for paclitaxel for cancer targeting

    The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5

    Get PDF
    Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8mNm(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8mNm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infective

    Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance

    Get PDF
    Maximin H5 (MH5) is an amphibian antimicrobial peptide specifically targeting Staphylococcus aureus. At pH 6, the peptide showed an increased ability to penetrate (∆П = 6.2 mN m-1) and lyse (lysis = 48 %) S. aureus membrane mimics, which incorporated physiological levels of lysylated phosphatidylglycerol (Lys-PG, 60 %) as compared to pH 7 (∆П = 5.6 mN m-1 and lysis = 40 % at pH 7) where levels of Lys-PG are lower (40 %). The peptide therefore appears to have optimal function at pH levels known to be optimal for the organism’s growth. MH5 killed S. aureus (minimum inhibitory concentration = 90 µM) via membranolytic mechanisms that involved the stabilization of α-helical structure (circa 45-50 %) and which showed similarities to the ‘Carpet’ mechanism based on its ability to increase the rigidity (Cs-1 = 109.94 mN m-1) and thermodynamic stability (∆Gmix = -3.0) of physiologically relevant S. aureus membrane mimics at pH 6. Based on theoretical analysis this mechanism may involve the use of a tilted peptide structure and efficacy was noted to vary inversely with the Lys-PG content of S. aureus membrane mimics for each pH studied (R2 circa 0.97), which led to the suggestion that under biologically relevant conditions, low pH helps mediate Lys-PG induced resistance in S. aureus to MH5 antibacterial action. The peptide showed a lack of haemolytic activity (< 2 % haemolysis) and merits further investigation as a potential template for development as an anti-staphylococcal agent in medically and biotechnically relevant areas

    The cooperative behaviour of antimicrobial peptides in model membranes

    Get PDF
    A systematic analysis of the hypothesis of the antimicrobial peptides' (AMPs) cooperative action is performed by means of full atomistic molecular dynamics simulations accompanied by circular dichroism experiments. Several AMPs from the aurein family (2.5,2.6, 3.1), have a similar sequence in the first ten amino acids, are investigated in different environments including aqueous solution, trifluoroethanol (TFE), palmitoyloleoylphosphatidylethanolamine (POPE), and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers. It is found that the cooperative effect is stronger in aqueous solution and weaker in TFE. Moreover, in the presence of membranes, the cooperative effect plays an important role in the peptide/lipid bilayer interaction. The action of AMPs is a competition of the hydrophobic interactions between the side chains of the peptides and the hydrophobic region of lipid molecules, as well as the intra peptide interaction. The aureins 2.5-COOH and 2.6-COOH form a hydrophobic aggregate to minimize the interaction between the hydrophobic group and the water. Once that the peptides reach the water/lipid interface the hydrophobic aggregate becomes smaller and the peptides start to penetrate into the membrane. In contrast, aurein 3.1-COOH forms only a transient aggregate which disintegrates once the peptides reached the membrane, and it shows no cooperativity in membrane penetratio

    Biophysical investigation into the antibacterial action of modelin-5-NH2

    Get PDF
    Modelin-5-CONH2 (M5-NH2) is a synthetic antimicrobial peptide, which was found to show potent activity against Bacillus subtilis (Minimum lethal concentration = 8.47 µM) and to bind strongly to membranes of the organism (Kd = 10.44 µM). The peptide adopted high levels of amphiphilic α-helical structure in the presence of these membranes (> 50 %), which led to high levels of insertion (Δπ ≥ 8.0 mN m-1). M5-NH2 showed high affinity for anionic lipid (Kd = 7.46 µM) and zwitterionic lipid (Kd = 14.7 µM), which drove insertion into membranes formed from these lipids (Δπ = 11.5 and 3.5 mN m-1, respectively). Neutron diffraction studies showed that M5-NH2 inserted into B. subtilis membranes with its N-terminal residue, L16, located 5.5 Å from the membrane centre, in the acyl chain region of these membranes, and promoted a reduction in membrane thickness of circa 1.8 Å or 5 % of membrane width. Insertion into B. subtilis membranes by the peptide also promoted other effects associated with membrane thinning, including increases in membrane surface area (Cs-1 decreases) and fluidity (ΔGmix > 0 to ΔGmix 55%), and it is speculated that the antibacterial action of the peptide may involve the toroidal pore, carpet or tilted-type mechanism of membrane permeabilization

    Bacterial susceptibility and resistance to modelin-5

    Get PDF
    Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m−1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide

    Motherhood on ice? A media framing analysis of older mothers in the UK news

    Get PDF
    Changing gender roles and increased sexual and economic freedom have created opportunities for women to give birth relatively late in life. However, stigma and misplaced fears about physical capacity are often reported as sources of anxiety among older, and in vitro fertilisation-induced mothers. In this study, we apply a specially adapted method for analysing news media content to a week's selection of material in the British media following the dissemination of research at an international medical conference. Our findings suggest, despite some positive commentaries, that much negative discourse is circulated by the media about older mothers, from implied claims of selfishness (older mothers as 'delaying' conception) to violations of the 'natural order'. These latter claims reflect the long-standing ambivalence by the media generally towards scientific advancement, but they also reveal continuing resistance towards unorthodox lifestyles

    UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change

    Get PDF
    Current attempts to develop a proxy for Earth’s surface ultraviolet-B (UV-B) flux focus on the organic chemistry of pollen and spores because their constituent biopolymer, sporopollenin, contains UV-B absorbing pigments whose relative abundance may respond to the ambient UV-B flux. Fourier transform infrared (FTIR) microspectroscopy provides a useful tool for rapidly determining the pigment content of spores. In this paper, we use FTIR to detect a chemical response of spore wall UV-B absorbing pigments that correspond with levels of shade beneath the canopy of a high-latitude Swedish birch forest. A 27% reduction in UV-B flux beneath the canopy leads to a significant (p<0.05) 7.3% reduction in concentration of UV-B absorbing compounds in sporopollenin. The field data from this natural flux gradient in UV-B further support our earlier work on sporopollenin-based proxies derived from sedimentary records and herbaria collections

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
    • …
    corecore