1,615 research outputs found

    Constructing quantum games from symmetric non-factorizable joint probabilities

    Full text link
    We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.Comment: 20 pages, no figure, accepted for publication in Physics Letters

    Identification of small-molecule inhibitors of the antiapoptotic protein myeloid cell leukaemia-1 (Mcl-1)

    Get PDF
    Protein–protein interactions (PPIs) control many cellular processes in cancer and tumour growth. Of significant interest is the role PPIs play in regulating apoptosis. The overexpression of the antiapoptosis regulating Bcl-2 family of proteins is commonly observed in several cancers, leading to resistance towards both radiation and chemotherapies. From this family, myeloid cell leukemia-1 (Mcl-1) has proven the most difficult to target, and one of the leading causes of treatment resistance. Exploiting the selective PPI between the apoptosis-regulating protein Noxa and Mcl-1, utilising a fluorescence polarization assay, we have identified four small molecules with the ability to modulate Mcl-1. The identified compounds were computationally modelled and docked against the Mcl-1 binding interface to obtain structural information about their binding sites allowing for future analogue design. When examined for their activity towards pancreatic cell lines that overexpress Mcl-1 (MiaPaCa-2 and BxPC-3), the identified compounds demonstrated growth inhibition, suggesting effective Mcl-1 modulation

    Non-factorizable Joint Probabilities and Evolutionarily Stable Strategies in the Quantum Prisoner's Dilemma Game

    Full text link
    The well known refinement of the Nash Equilibrium (NE) called an Evolutionarily Stable Strategy (ESS) is investigated in the quantum Prisoner's Dilemma (PD) game that is played using an Einstein-Podolsky-Rosen type setting. Earlier results report that in this scheme the classical NE remains intact as the unique solution of the quantum PD game. In contrast, we show here that interestingly in this scheme a non-classical solution for the ESS emerges for the quantum PD.Comment: 9 pages, no figur

    Multi-block polyurethanes via RAFT end-group switching and their characterization by advanced hyphenated techniques

    Get PDF
    The detailed characterization of poly(styrene)-b-poly(tetrahydrofuran) (pS-b-pTHF) multiblock copolymers (17800 g mol(-1) <= M-n <= 46800 g mol(-1)) generated via urethane linkages is presented. The synthesis of the block copolymers is enabled via a mechanistic switch of the thiocarbonyl thio end group of a poly(styrene) to dihydroxyl terminated polymers that subsequently react with a diisocyanate terminated polytetrahydrofuran based prepolymer to form multiblock copolymer structures. The characterization of the multiblock copolymers and their substructures includes size exclusion chromatography (SEC), liquid chromatography at critical conditions (LCCC), nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy as well as matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. To obtain even further details of the polymer size and its composition, SEC with triple detection as well as newly developed SEC coupled online to IR spectroscopy was carried out. The quantification of the average block fractions via online SEC-IR (41-61 mol % pTHF) is in very good agreement with the results obtained via NMR spectroscopy (39-66 mol % pTHF)

    A Novel Clustering Algorithm Based on Quantum Games

    Full text link
    Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.Comment: 19 pages, 5 figures, 5 table

    Life Cycle of Multi Technology Machine Tools – Modularization and Integral Design

    Get PDF
    AbstractFor reasons of high flexibility but still maximum productivity, machine tools integrating various production technologies have recently received particular attention. Combining and integrating multiple manufacturing techniques into one single system in early stages of the product emergence process is challenging. To keep the effort for implementation to a minimum, an initiation already in the concept phase is being actively pursued. Design guidelines are currently investigated based on the examination of different technology combinations.This approach focuses on systematic conceptual design for such hybrid machine technologies. Product architectures are used to describe the modularity and create a specific delimitation for standardization. Reference product architectures for Multi Technology Machine Tools (MTMT) carry high potential for saving expenses in product development. The main emphasis is on technology and system integration. A technological similarity assessment of the single processes involved forms the basis of this approach to assure potential for synergies. Monetary aspects in early stages of product development are considered. Based on the analysis a generic system model is connected with general product architectures for MTMT.The method introduced is validated by a Multi-Technology Machining Centre with two simultaneously usable workspaces integrating a milling spindle and two laser processing units. The research undertaken is part of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” and has been funded by German Research Foundation (DFG)

    Uniqueness of Noncontextual Models for Stabilizer Subtheories

    Get PDF
    We give a complete characterization of the (non)classicality of all stabilizer subtheories. First, we prove that there is a unique nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory in all odd dimensions, namely Gross’s discrete Wigner function. This representation is equivalent to Spekkens’ epistemically restricted toy theory, which is consequently singled out as the unique noncontextual ontological model for the stabilizer subtheory. Strikingly, the principle of noncontextuality is powerful enough (at least in this setting) to single out one particular classical realist interpretation. Our result explains the practical utility of Gross’s representation by showing that (in the setting of the stabilizer subtheory) negativity in this particular representation implies generalized contextuality. Since negativity of this particular representation is a necessary resource for universal quantum computation in the state injection model, it follows that generalized contextuality is also a necessary resource for universal quantum computation in this model. In all even dimensions, we prove that there does not exist any nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory, and, hence, that the stabilizer subtheory is contextual in all even dimensions

    RNA Sequencing-Based Genome Reannotation of the Dermatophyte Arthroderma benhamiae and Characterization of Its Secretome and Whole Gene Expression Profile during Infection.

    Get PDF
    Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae. Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum. IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete's foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae. Comparing gene expression during infection on guinea pigs with keratin degradation in vitro, which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo, encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates
    corecore