125 research outputs found

    Mechanisms of Adaptation from a Multiple to a Single Step Recovery Strategy following Repeated Exposure to Forward Loss of Balance in Older Adults

    Get PDF
    When released from an initial, static, forward lean angle and instructed to recover with a single step, some older adults are able to meet the task requirements, whereas others either stumble or fall. The purpose of the present study was to use the concept of margin of stability (MoS) to investigate balance recovery responses in the anterior-posterior direction exhibited by older single steppers, multiple steppers and those that are able to adapt from multiple to single steps following exposure to repeated forward loss of balance. One hundred and fifty-one healthy, community dwelling, older adults, aged 65–80 years, participated in the study. Participants performed four trials of the balance recovery task from each of three initial lean angles. Balance recovery responses in the anterior-posterior direction were quantified at three events; cable release (CR), toe-off (TO) and foot contact (FC), for trials performed at the intermediate lean angle. MoS was computed as the anterior-posterior distance between the forward boundary of the Base of Support (BoS) and the vertical projection of the velocity adjusted centre of mass position (XCoM). Approximately one-third of participants adapted from a multiple to a single step recovery strategy following repeated exposure to the task. MoS at FC for the single and multiple step trials in the adaptation group were intermediate between the exclusively single step group and the exclusively multiple step group, with the single step trials having a significant, 3.7 times higher MoS at FC than the multiple step trials. Consistent with differences between single and multiple steppers, adaptation from multiple to single steps was attributed to an increased BoS at FC, a reduced XCoM at FC and an increased rate of BoS displacement from TO to FC. Adaptations occurred within a single test session and suggest older adults that are close to the threshold of successful recovery can rapidly improve dynamic stability following repeated exposure to a forward loss of balance

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 ”g and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Embryogenesis in Sedum acre L.: structural and immunocytochemical aspects of suspensor development

    Get PDF
    The changes in the formation of both the actin and the microtubular cytoskeleton during the differentiation of the embryo-suspensor in Sedum acre were studied in comparison with the development of the embryo-proper. The presence and distribution of the cytoskeletal elements were examined ultrastructurally and with the light microscope using immunolabelling and rhodamine-phalloidin staining. At the globular stage of embryo development extensive array of actin filaments is present in the cytoplasm of basal cell, the microfilament bundles generally run parallel to the long axis of basal cell and pass in close to the nucleus. Microtubules form irregular bundles in the cytoplasm of the basal cell. A strongly fluorescent densely packed microtubules are present in the cytoplasmic layer adjacent to the wall separating the basal cell from the first layer of the chalazal suspensor cells. At the heart-stage of embryo development, in the basal cell, extremely dense arrays of actin materials are located near the micropylar and chalazal end of the cell. At this stage of basal cell formation, numerous actin filaments congregate around the nucleus. In the fully differentiated basal cell and micropylar haustorium, the tubulin cytoskeleton forms a dense prominent network composed of numerous cross-linked filaments. In the distal region of the basal cell, a distinct microtubular cytoskeleton with numerous microtubules is observed in the cytoplasmic layer adjacent to the wall, separating the basal cell from the first layer of the chalazal suspensor cells. The role of cytoskeleton during the development of the suspensor in S. acre is discussed

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Sertoli cells have a functional NALP3 inflammasome that can modulate autophagy and cytokine production

    Get PDF
    Sertoli cells, can function as non-professional tolerogenic antigen-presenting cells, and sustain the blood-testis barrier formed by their tight junctions. The NOD-like receptor family members and the NALP3 inflammasome play a key role in pro-inflammatory innate immunity signalling pathways. Limited data exist on NOD1 and NOD2 expression in human and mouse Sertoli cells. Currently, there is no data on inflammasome expression or function in Sertoli cells. We found that in primary pre-pubertal Sertoli cells and in adult Sertoli line, TLR4\NOD1 and NOD2 crosstalk converged in NF?B activation and elicited a NALP3 activation, leading to de novo synthesis and inflammasome priming. This led to caspase-1 activation and IL-1? secretion. We demonstrated this process was controlled by mechanisms linked to autophagy. NOD1 promoted pro-IL-1? restriction and autophagosome maturation arrest, while NOD2 promoted caspase-1 activation, IL-1? secretion and autophagy maturation. NALP3 modulated NOD1 and pro-IL-1? expression, while NOD2 inversely promoted IL-1?. This study is proof of concept that Sertoli cells, upon specific stimulation, could participate in male infertility pathogenesis via inflammatory cytokine induction

    Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    Get PDF
    Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases

    Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river

    Get PDF
    The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance

    WHEDA study: Effectiveness of occupational therapy at home for older people with dementia and their caregivers - the design of a pragmatic randomised controlled trial evaluating a Dutch programme in seven German centres

    Get PDF
    Contains fulltext : 80941.pdf (publisher's version ) (Open Access)BACKGROUND: A recent Dutch mono-centre randomised controlled trial has shown that occupational therapy improves daily functioning in dementia. The aim of this present study is to compare the effects of the Dutch community occupational therapy programme with a community occupational therapy consultation on daily functioning in older people with mild or moderate dementia and their primary caregivers in a German multi-centre context. METHODS/DESIGN: A multi-centre single blind randomised controlled trial design is being used in seven health care centres (neurological, psychiatric and for older people) in urban regions. Patients are 1:1 randomised to treatment or control group. Assessors are blind to group assignment and perform measurements on both groups at baseline, directly after intervention at 6 weeks and at 16, 26 and 52 weeks follow-up. A sample of 140 community dwelling older people (aged >65 years) with mild or moderate dementia and their primary caregivers is planned. The experimental intervention consists of an evidence-based community occupational therapy programme including 10 sessions occupational therapy at home. The control intervention consists of one community occupational therapy consultation based on information material of the Alzheimer Society. Providers of both interventions are occupational therapists experienced in treatment of cognitively impaired older people and trained in both programmes. 'Community' indicates that occupational therapy intervention occurs in the person's own home. The primary outcome is patients' daily functioning assessed with the performance scale of the Interview for Deterioration in Daily Living Activities in Dementia and video tapes of daily activities rated by external raters blind to group assignment using the Perceive, Recall, Plan and Perform System of Task Analysis. Secondary outcomes are patients' and caregivers' quality of life, mood and satisfaction with treatment; the caregiver's sense of competence, caregiver's diary (medication, resource utilisation, time of informal care); and the incidence of long-term institutionalisation. Process evaluation is performed by questionnaires and focus group discussion. DISCUSSION: The transfer from the Dutch mono-centre design to the pragmatic multi-site trial in a German context implicates several changes in design issues including differences in recruitment time, training of interventionists and active control group treatment.The study is registered under DRKS00000053 at the German register of clinical trials, which is connected to the International Clinical Trials Registry Platform
    • 

    corecore