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Abstract

Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the

possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics

approaches are, however, limited by the large number of new variations found in each newly

sequenced genome, and often do not provide direct mechanistic insight. Here we demon-

strate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation

analysis, performed in silico, can predict the abundance, metabolic stability, and function of

proteins inside living cells. As a model system, we selected the human mismatch repair pro-

tein, MSH2, where missense variants are known to cause the hereditary cancer predisposi-

tion disease, known as Lynch syndrome. We show that the majority of disease-causing

MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather

than inherent loss of function, and accordingly our in silico modeling data accurately identi-

fies disease-causing mutations and outperforms the traditionally used genetic disease pre-

dictors. Thus, in conclusion, in silico biophysical modeling should be considered for making

genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other

hereditary diseases.

Author summary

The protein quality control system targets misfolded proteins for degradation. So far it has

not been possible from sequence or structural data to predict the biological stability of a

misfolded protein, or the effect of mutations on intracellular protein levels. Here we dem-

onstrate that in silico saturation mutagenesis and biophysical calculations of the structural

stability of the human mismatch repair protein MSH2 correlate with cellular protein lev-

els, turnover and function. Of 24 different MSH2 variants, some of which are linked to
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Lynch syndrome, a destabilization of as little as 3 kcal/mol is sufficient to cause rapid deg-

radation via the ubiquitin-proteasome pathway. Thus, biophysical modeling can, to a

large extent, predict the metabolic stability of proteins. We also show that the same bio-

physical calculations can be used to distinguish with high accuracy neutral sequence varia-

tion from pathogenic variants, and that the calculations outperform several traditionally

used disease predictors. We therefore suggest the method to be of potential value for

patient stratification in Lynch syndrome, and perhaps other hereditary diseases.

Introduction

Due to mutations, stress, or failures during synthesis, cells produce proteins that misfold.

Accumulation of misfolded proteins represents a considerable threat to cells, which have

therefore evolved efficient protein quality control (PQC) mechanisms [1–3]. These rely on

molecular chaperones that either refold the misfolded proteins or target them for degradation

via the ubiquitin-proteasome system (UPS).

Early studies showed that certain missense protein variants are more rapidly degraded than

wild type proteins [4]. Since then a number of proteins involved in targeting the misfolded

proteins for degradation have been identified, particularly in yeast cells, where mutants in UPS

components were identified as extragenic suppressors of point mutants in essential genes

[5,6]. These observations suggest that PQC is highly diligent and important, but the issue of

what determines whether a mutant protein is degraded or not remains unanswered.

To further our understanding on the intricate relationship between protein stability, degra-

dation and biological function, we performed in silico and cellular studies of the mismatch

repair protein MSH2, which has previously been shown to be a target of a PQC pathway in

yeast cells [7]. Point mutations in MSH2 are linked to hereditary nonpolyposis colorectal can-

cer (HNPCC) or Lynch syndrome, an inherited disorder that increases the risk of many types

of cancer, in particular colon cancer [8]. Identification of pathogenic MSH2 mutations would

be of direct clinical relevance, because an early diagnosis can strongly increase survival [9], but

many mutations are of unknown pathogenic significance. We found that the predicted struc-

tural stability of MSH2 correlates with the cellular protein stability, but even slight structural

perturbations may result in MSH2 degradation. Treating cells with the proteasome inhibitor

bortezomib or stabilizing MSH2 mutants by lowering the temperature strongly reduced

MSH2 degradation, showing that the proteasomal degradation of MSH2 variants is a direct

consequence of a structural destabilization. Thus, in conclusion our data show for the first

time that biophysical modelling can predict the stability of proteins in cells and suggest that

biophysical modelling can provide both mechanistic insight and a novel diagnostic approach

to Lynch syndrome and other genetic diseases.

Results

Saturation mutagenesis and thermodynamic stability predictions

Missense mutations in MSH2 and other mismatch repair proteins have been linked to the

hereditary cancer predisposition disorder, known as Lynch syndrome. Obviously, missense

mutations may ablate protein function e.g. by mutation in an active site, but also because in

general missense proteins are less structurally stable than the wild type protein [10]. To study

such stability effects for MSH2, we employed structure-based energy calculations to predict

the effects of mutations in MSH2 on the structural (thermodynamic) stability. As a starting
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point, we used the published crystal structure of the human MSH2-MSH6 heterodimer [11] to

perform in silico saturation mutagenesis, introducing all possible single site amino acid substi-

tutions into the wild type human MSH2 sequence. We then used two of the most established

and tested energy functions for large-scale biophysical modeling, FoldX [12] and Rosetta

[13,14], to predict the change in thermodynamic folding stability with respect to the wild type

protein (ΔΔG) (Supporting information S1 File, S2 File and S3 File). Both energy functions

provide a quantitative description of the inter- and intramolecular interactions that stabilize

proteins, and have been extensively benchmarked for ΔΔG prediction over a set of test pro-

teins, with accuracies of about 0.8 kcal/mol [12] and 0.7 kcal/mol [13], respectively. The results

presented here are mostly based on our FoldX calculations, but as described further below, cal-

culations using Rosetta gave very similar results. The calculated values report on the change in

structural stability of the MSH2-MSH6 complexes, such that negative values indicate variants

that are more stable than the wild type, while positive values indicate that the variants are less

stable than the wild type MSH2 protein. Thus, mutant variants with ΔΔG>0 have, compared

to the wild type sequence, a higher population of (partially) unfolded structures that are prone

to misfold or aggregate. Our dataset comprises 19 (amino acids, not including the wild type

residue) � 855 (resolved residues in the crystal structure) = 16,245 MSH2 variants. Heat map

representations of all the FoldX calculations are included in the supporting information (Sup-

porting information S2 File) and, for the first 95 residues, shown here (Fig 1A). From these

data, it is clear that mutations at some positions are tolerated (blue/turquoise vertical columns,

e.g. S13), while for other positions most mutations are predicted to destabilize the structure

(red vertical columns, e.g. A50). In addition, the structural constraints typically induced by

substituting with proline are also evident (red horizontal line for P).

The resulting distribution of ΔΔG values is similar to those described previously for other

proteins [10,15] and reveal that most MSH2 mutations only moderately affect MSH2’s ther-

modynamic stability, i.e. that many ΔΔG values are relatively close to 0 kcal/mol (Fig 1B). Few

mutations appear to stabilize MSH2 (e.g. 5% have ΔΔG< -1 kcal/mol), while more are pre-

dicted to structurally destabilize MSH2 (e.g. 9% have ΔΔG> 5 kcal/mol). The known disease-

causing mutations generally appear to display higher ΔΔG values (mean ΔΔG is 9 kcal/mol for

the cancer predisposing variants compared to an average of 2 kcal/mol over all mutants) and

are therefore likely to structurally destabilize the MSH2 protein (Fig 1B). Intriguingly, how-

ever, some Lynch syndrome-linked MSH2 mutations are predicted to have only a minor effect

on protein stability (Table 1; Supporting information S3 File), suggesting a more complex rela-

tionship between mutations and disease.

MSH2 mutations lead to reduced steady-state protein levels

Previous studies have shown that the steady-state level of certain disease-linked MSH2 variants

is reduced [16,17]. To test this in a more general manner, we selected 24 different missense

MSH2 mutants with predicted ΔΔGs spanning from -0.3 to 39.7 kcal/mol for further studies

(Table 1). When selecting these, we ensured that the mutations were scattered evenly through-

out the MSH2 structure (Fig 1C). To ensure that our observations did not depend on the

potential special nature of pathogenic mutations, we included mutations that have been linked

to Lynch syndrome and others that to our knowledge have not. Data and known clinical rele-

vance for each of the selected variants are summarized in Table 1.

The selected point mutants were introduced in U2OS cells and expressed with an N-termi-

nal 6His-tag. Several of the variants had strongly reduced steady-state levels (Fig 2A). When

we treated the cells with the proteasome inhibitor bortezomib (BZ), we observed substantially

higher steady-state levels, suggesting that the reduced levels are caused by proteasomal

In silico prediction of protein degradation and function

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006739 April 19, 2017 3 / 26

https://doi.org/10.1371/journal.pgen.1006739


degradation of the MSH2 variants (Fig 2A). This effect was not a result of introducing the

6His-tag, since CFP-tagged MSH2 variants were also unstable (Supporting information S1A

Fig). In addition, the observed destabilization was also valid for other disease-causing MSH2

variants listed in the OMIM database, such as R524P, P622L, A636P, H639Y and G669V. In

contrast, the G322D variant that is also present in OMIM, appeared stable (S1B Fig).

Fig 1. In silico saturation mutagenesis and thermodynamic stability of MSH2 mutants. (A) Example of structure-based MSH2 saturation mutagenesis

energy calculations shown as a heat-map that represents the change in thermodynamic stability relative to the wild type protein. Due to space limitations, the

results are only shown for the first 95 residues (the full dataset is provided in the supporting information S1 File & S2 File). The wild type MSH2 sequence is

given below, while the 20 possible residues at each position are shown on the vertical axis. The color bar indicates the magnitude of the change in stability, so

that stabilizing mutations are shown in blue, neutral mutations in turquoise, and highly destabilizing mutations in red (mutations that decrease the stability by

more than 7 kcal/mol are represented by the same color). (B) A histogram of the number of mutants (vertical axis) plotted against the predicted thermodynamic

stability (ΔΔG) (horizontal axis). The mean and variance of the entire dataset, and known disease-linked variants [7] are included in the insert. The arrows mark

the ΔΔG values for the set of disease-linked MSH2 mutants included in this study. (C) The positions of 24 selected MSH2 mutants are marked in colors

according to the heat-map in (A) on a trace of the MSH2-MSH6 structure (PDB: 2O8E). MSH2 is shown in light gray, MSH6 in dark grey and DNA in orange.

https://doi.org/10.1371/journal.pgen.1006739.g001
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Accordingly, previous studies have shown this variant to be benign [18]. As it is also found at a

high frequency in the Exome Aggregation Consortium (ExAC) database [19], we suggest that

this variant is indeed non-pathogenic, which further strengthens our finding that in general

the disease-linked MSH2 variants are structurally more destabilized than non-pathogenic

sequence variation (see also below).

Recently, it was proposed that when wild type MSH2 is produced in excess of its binding

partners, MSH3 and MSH6, it is ubiquitylated by the histone deacetylase HDAC6 and

degraded by the proteasome [20]. Indeed, the MSH2 proteins, produced here, are overex-

pressed (Fig 2B). We did, however, not observe any change in wild type MSH2 levels upon

treatment with proteasome inhibitors, suggesting that the overexpressed wild type MSH2 is

not rapidly turned over. Moreover, since knock-down of HDAC6 did not affect the steady-

state level of wild type MSH2 or any of the selected MSH2 mutants (Supporting information

S1B Fig), we conclude that the reported HDAC6-dependent turnover of orphan MSH2 is not

relevant for the MSH2 quality control mechanism that we describe here.

When examining the steady-state level of the MSH2 variants relative to wild type MSH2,

we observed that those variants with high ΔΔG values displayed a reduced steady-state level

(Fig 2C). However, some MSH2 variants predicted to be structurally rather stable (low ΔΔG

Table 1. Stability and function of selected MSH2 mutant proteins.

Selected

mutations

FoldX ΔΔG (kcal/mol) Solvent accessibility (%) Half-life (hours) Nuclear

localization

MSH6 interaction Found in patients Temperature

sensitive

Wild type 0.0 - 19±3 Yes Yes No No

R39E 3.4 17.4 4±2 Yes Yes No Tsa

A54Y 21.2 0.0 8±0.1 Yes Yes No Ts

L75K 3.0 6.1 5±2 Yes Yes No Ts

Y98C 2.5 19.8 13±2 Yes Yes Yes (Ts)

L135Y 3.4 16.2 22±4 Yes Yes No No

D180F 16.5 0.1 6±1 Yes Yes Yes No

L187P 8.8 0.7 5±1 Yes No Yes No

C199R 5.5 0.0 5±1 (Yes) No Yes No

K228E 0.2 100 20±1 Yes Yes No No

M253Y -0.1 94.4 20±2 Yes Yes No No

A266W 39.7 0.0 4±0.4 Yes Weak No No

D283K 0.5 100 8±1 Yes Yes No No

C333Y 21.7 0.3 5±0.4 (Yes) Weak Yes No

A399K 9.4 0.3 11±1 Yes Yes No No

D459I 2.4 20.6 13±1 Yes Yes No No

E561V 0.0 78 20±5 Yes Yes No No

D603N 1.0 3.8 6±2 (Yes) Yes Yes No

P622T 3.7 0.0 10±2 (Yes) Yes Yes Csb

A649F -0.3 100 16±3 Yes Yes No No

G669D 12.7 10.3 7±1 Yes Yes Yes No

G683R 9.8 0.0 7±3 (Yes) No Yes No

P696F 13.8 0.0 4±1 Yes Weak No No

S743P 7.5 0.0 7±4 Yes Yes No No

L851P 5.1 35.3 16±1 Yes Yes No No

a: ts, temperature sensitive. b: cs, cold sensitive. The brackets indicate partial nuclear localization or weak ts phenotype.

https://doi.org/10.1371/journal.pgen.1006739.t001
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values) exhibit low steady-state levels (Fig 2C), showing that the PQC is highly sensitive to

abnormal proteins.

The thermodynamic stability (ΔG value) of each mutant can be calculated as the sum of the

stability of the wild type protein (ΔGWT) and the difference in stability between the wild type

and mutant (ΔΔG). While FoldX can predict the latter, ΔGWT remains unknown. We can,

however, estimate an effective value of ΔGWT from the data under the rough assumption that

the steady-state level in the cell is proportional to the fraction of folded protein ([Fold]/([Unf]

+[Fold])), which we in turn can determine from the relationship ΔGMut = ΔGWT+ΔΔG = -RT

ln([Unf]/[Fold]). Fitting the data to this relationship results in ΔGWT ~ -3.1 ± 0.4 kcal mol-1

(Fig 2C). We note that this value is an estimate of the effective stability of MSH2 inside the cel-

lular environment and in the presence of the PQC system, and might potentially differ from

the absolute stability of MSH2/MSH6 in vitro. The value obtained is also in line with a visual

analysis of the data, which suggests a general drop in protein levels for mutants that have

ΔΔG> 3 kcal/mol, and an independent estimate obtained using functional studies of MSH2

mutants (see below). We note, however, also the substantial scatter of the data around the fit-

ted line. These deviations may for example be due to inaccuracies in the ΔΔG predictions, dif-

ferences between in silico and cellular stabilities and the specific mechanisms by which the

PQC recognizes misfolded proteins. We conclude that a destabilization of roughly 3 kcal/mol

is sufficient to cause degradation.

Fig 2. MSH2 mutation leads to reduced steady-state levels due to proteasomal degradation. (A) The steady-state level of the indicated wild type (WT)

or MSH2 mutants expressed in U2OS cells was determined using SDS-PAGE and Western blotting with antibodies to 6His-tag on MSH2 in cultures that were

either untreated or treated with the proteasome inhibitor bortezomib (BZ) for 10 hours. β-actin served as a loading control. See also supporting information S1

Fig. (B) Blotting, using antibodies to MSH2, revealed that transfection of wild type 6His-MSH2 led to an overexpression of approximately 4 fold. (C) Steady-

state levels of the selected MSH2 variants plotted vs. the calculated ΔΔG values. The error bars indicate S.E.M. (n = 3). The red line corresponds to the fit

with the thermodynamic model. The grey line indicates the 25th and 75th percentiles after a bootstrapping procedure, in which we fit random subsets of the

data to the thermodynamic model (percentiles taken after 5000 iterations of fitting). The ΔG(WT) estimate and error are derived from the same bootstrapping

procedure.

https://doi.org/10.1371/journal.pgen.1006739.g002
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MSH2 variants are rapidly degraded

Next, we analyzed if the reduced steady-state levels of the mutant MSH2 variants were indeed

caused by rapid degradation. In cultures treated with the translation inhibitor, cycloheximide

(CHX), we followed the amounts of MSH2 by Western blotting. We found that wild type MSH2

was relatively stable with a half-life of 19 ± 3 hours (Fig 3A) while those mutant proteins that dis-

played a reduced steady-state level were rapidly degraded (Fig 3A) (Table 1). Since certain DNA

repair components are degraded as part of their normal function [21], we also followed the deg-

radation of wild type MSH2 in cultures treated with the alkylating agent, methylnitronitrosogua-

nidine (MNNG). However, since MNNG treatment did not affect MSH2 stability (Supporting

information S2A Fig), we conclude that the MSH2 variants are turned over as part of a cellular

quality control mechanism and not as consequence of their function in mismatch repair. In

addition, the turnover of the MSH2 variants was not a result of the overexpression, since wild

type MSH2 was degraded with similar kinetics to that observed for endogenous MSH2 (Sup-

porting information S2B Fig), and cells stably transfected to produce selected MSH2 variants

at near endogenous levels (Supporting information S2C Fig) degraded the proteins with

kinetics identical to those observed for the overexpressed variants (Supporting information

S2D Fig).

In general, the rapidly degraded MSH2 variants carried mutations in residues buried within

the MSH2 protein and, interestingly, appear to cluster towards the C-terminal ATPase domain

(Table 1). Since mutations in residues that are buried and form many contacts often lead to a

greater structural destabilization than mutations in surface residues [10,22], we observed that

in general those proteins that are predicted as structurally highly destabilized were also rapidly

degraded (Table 1). Accordingly, when plotting the half-lives of the MSH2 variants, we

observed that those variants with high ΔΔG values displayed a more rapid degradation (Fig

3B). The correlation between ΔΔG and turnover rate was statistically significant (Fig 3C).

However, some variants that were rapidly degraded did not display strongly increased ΔΔG

values, which suggests that the over-zealous PQC system targets some MSH2 variants that are

structurally stable and perhaps retain function.

Some MSH2 variants are stabilized at low temperatures

From the experiments above, we conclude that turnover, at least in part, correlates with the

predicted thermodynamic stability of the protein. To test this further, we generated another

four MSH2 point mutants, exchanging thermodynamically unfavorable residues (high ΔΔG)

into more favorable residues (low ΔΔG) at the same position in the protein, and analyzed their

degradation as before. Indeed, we found that this dramatically stabilized the MSH2 proteins

(Fig 4A). For instance, while the C333Y variant (ΔΔG = 21.7 kcal/mol) is rapidly degraded (t½

= 5 ± 0.4 hours), the C333T variant (ΔΔG = -0.3 kcal/mol) is degraded slowly at a rate compa-

rable to wild type (t½ = 16 ± 3 hours) (Fig 4A). Thus, it is not just the location of the mutation

in the sequence or the structure that is important, but the exact nature of the change in the

amino acid side chain chemistry.

In addition to changes in the amino acid sequence, a number of chemical and physical

parameters are known to affect the structural stability of proteins. For instance, several mis-

folded proteins are stabilized at lower temperatures, but some are also destabilized at lower

temperatures [23]. To further corroborate the relation between structural protein stability and

protein turnover, we repeated the protein degradation assays on the full set of MSH2 variants,

but now lowering the temperature from 37˚C to 29˚C. For some MSH2 variants (R39E, A54Y,

L75K) this radically slowed the degradation (Figs 3A and 4B) (Table 1), while one variant

(P622T) appeared less stable at 29˚C than at 37˚C (Table 1). The reduced turnover of the

In silico prediction of protein degradation and function
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MSH2 R39E, A54Y and L75K variants at 29˚C compared to 37˚C is not simply a consequence

of a reduced UPS activity at lower temperatures, since the turnover of most others variants was

Fig 3. Degradation of MSH2 variants. (A) The degradation of wild type (WT) MSH2 or the indicated MSH2 mutants in U2OS cells was followed at 37˚C

in cultures treated with cycloheximide (CHX) for 0, 8, 16 and 24 hours. β-actin served as a loading control. The half-life (t½) of each variant was

determined by densitometry of this and longer exposures and is given below along with the standard deviation. As a guide, slowly degraded variants

have been boxed in green, rapidly degraded variants in red, while intermediate variants are boxed in yellow. See also supporting information S2 Fig. (B)

The half-life for the MSH2 variants plotted vs. the calculated ΔΔG values in categories of < 3 kcal/mol and > 3kacl/mol. Bootstrapping shows that average

half-life values for low-ΔΔG variants are higher than for high-ΔΔG variants with a p-value of 0.01 (**). (C) A plot of the calculated thermodynamic

stabilities of the mutants (vertical axis) against the degradation rate. The horizontal line marks the median and the bars indicate the spread of the data

points. *** indicates p < 0.001.

https://doi.org/10.1371/journal.pgen.1006739.g003
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entirely unaffected by this change in temperature (Figs 3A and 4B). Also, the cellular amounts

of ubiquitin-protein conjugates and proteasomes were unchanged in this temperature interval

(Supporting information S3 Fig).

Surprisingly, when we mapped the temperature sensitive mutations onto the MSH2 struc-

ture, we found that all clustered towards the MSH2 N-terminal DNA binding region (Fig 4C).

Thus, local unfolding of this domain might be particularly temperature dependent rendering

these mutations more temperature sensitive. Notably, the corresponding region in the bacte-

rial MSH2 homologue has been shown to be highly dynamic in solution [24].

The structural stability calculations can predict dimerization with MSH6

Although our data suggest that the thermodynamic stabilities of MSH2 variants is the primary

factor that decides their turnover, some of the variants, included in our selection, are rapidly

degraded despite having structural stabilities only slightly lower than wild type. For instance,

the disease-causing D603N variant is rapidly degraded (t½ = 6 ± 2 hours) while the mutation

is not predicted to strongly affect MSH2 structure (ΔΔG = 1.0 kcal/mol). We therefore specu-

lated whether this and other MSH2 variants are still functional, and in this way, similar to

other genetic disease such as cystic fibrosis [25], Lynch syndrome could be explained by the

over-zealous degradation machinery.

To test this hypothesis, we first analyzed the subcellular localization of the selected MSH2

variants. All variants localized to the nucleus similar to the wild type protein [26], (Supporting

information S4A and S4B Fig and Table 1), although the signal intensity varied (Supporting

information S4A Fig) as expected, based on the reduced steady-state level.

To better discriminate between functional and dysfunctional MSH2 variants we therefore

turned to mapping the interaction partners of wild type MSH2 and of L187P that displays a

high ΔΔG value (8.8 kcal/mol), is rapidly degraded and therefore likely to be highly misfolded

and not functional. To quantify any differences in terms of protein binding between wild type

MSH2 and the L187P variant, a quantitative proteomics experiment was undertaken. All mass

spectrometry data are included in the supporting information (Supporting information S4

File). Affinity purification was used to purify proteins from cells treated with bortezomib (to

ensure that L187P was not degraded) expressing vector (control), 6His-MSH2 (wild type) or

6His-MSH2-L187P (Supporting information S5A Fig) in quadruplicates. The purified proteins

were digested with trypsin, and LC-MS/MS in combination with MaxQuant data analysis was

used for identification and quantification. Label-free intensities were converted to ratios by

comparison of the 6His-MSH2 purification protein intensities with those derived from the

control purifications. MSH2, MSH3 and MSH6 were the three most enriched proteins in

6His-wild-type MSH2 preparations (Supporting information S5B Fig). In the presence of pro-

teasome inhibitors L187P was expressed at roughly half the level of the wild type (Supporting

information S5A, S5B and S5C Fig). MSH6 was almost 8 fold reduced in abundance, and

MSH3 almost 30 fold reduced in the L187P samples compared to wild type (Supporting infor-

mation S5B and S5C Fig). The reduced binding of L187P to MSH3 and MSH6 was confirmed

Fig 4. Stabilizing rapidly degraded MSH2 variants by mutation or lowered temperature. (A) The degradation of wild type (WT) MSH2 or the

indicated MSH2 mutants in U2OS cells was followed at 37˚C in cultures treated with cycloheximide (CHX) for 0, 8, 16 and 24 hours. β-actin served as

a loading control. The half-life (t½) of each variant was determined by densitometry of this and longer exposures and is given below along with the

standard deviation. Note that MSH2 variants with lower ΔΔG values appear more stable. (B) The degradation of wild type (WT) MSH2 or the indicated

MSH2 mutants in U2OS cells was followed at 29˚C in cultures treated with cycloheximide (CHX) for 0, 8, 16 and 24 hours. β-actin served as a loading

control. Those MSH2 mutants that displayed a temperature dependent degradation are boxed (red, heat sensitive; blue, cold sensitive). The half-life

(t½) of each variant was determined by densitometry and is given below along with the standard deviation. See also supporting information S3 Fig. (C)

Those MSH2 mutants that displayed a temperature-dependent degradation are marked on a trace of the MSH2-MSH6 structure, red, heat sensitive;

blue, cold sensitive. MSH2 is shown in orange, MSH6 in grey and DNA in yellow.

https://doi.org/10.1371/journal.pgen.1006739.g004
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independently by Western blotting (Supporting information S5D Fig). A wider screen showed

that wild type MSH2 and several MSH2 variants co-precipitated with endogenous MSH6 (Fig

5A). However, some MSH2 variants displayed only weak interactions with MSH6 (e.g. P696F)

and yet others appeared completely inept at MSH6 binding (e.g. G683R). Variants that interact

with MSH6 had an average loss of stability of 5 ± 1 kcal/mol (mean ± SEM) while those that

interacted poorly with MSH6 were more structurally unstable (15 ± 6 kcal/mol; p< 0.001)

(Fig 5B). We conclude that the structural stability calculations allow prediction of MSH2-

MSH6 dimerization potential.

The thermodynamic stability correlates with residual protein function

We next performed experiments to see whether certain unstable MSH2 variants would at least

retain some function. A characteristic feature of MSH2 loss-of-function and Lynch syndrome

cancers is increased resistance to DNA damage [27]. Accordingly, we found that siRNA-medi-

ated knockdown of endogenous MSH2 rendered U2OS cells resistant to an otherwise lethal

dosage of the alkylating agent, MNNG (Fig 5C). Stable introduction of siRNA resistant, wild

type MSH2 did not lead to appreciable overexpression (Fig 5D), but re-established the MNNG

sensitivity (Fig 5C). The tested MSH2 variants appeared partially sensitive (Fig 5E). Indeed, we

found a strong correlation (r2 = 0.81; p = 0.02) between the predicted loss of stability (ΔΔG)

and the ability to grow in the presence of MNNG (Fig 5E), suggesting that the assay is able to

probe the amount of functional MSH2. Even at the highest MNNG concentration (100 nM)

the L187P variant was not statistically different from the vector control. This is in agreement

with the interaction data, and indicates that L187P is misfolded to an extent where it has lost

all activity.

The correlation between the change in stability and resistance to MNNG offers us an

opportunity to provide an independent estimate of the stability of MSH2 (ΔGWT). Assuming

that the wild type protein is fully folded and L187P is mostly unfolded, we can fit the observed

activities (percent survival at 100 nM MNNG) to estimate ΔGWT (Fig 5F). The value obtained

(-2.7 kcal/mol) is in good agreement with the independent estimate obtained from the intra-

cellular protein levels (-3.1 kcal/mol, Fig 2C), and again corresponds visually also to the magni-

tude of destabilization that is needed to see a substantial difference from the wild type protein.

Although both estimates are associated with uncertainty, their agreement lends additional

credibility to the values and suggests a relatively low effective stability of MSH2 in the cell that,

as demonstrated above, also includes effects from interactions with partner proteins. We note

also that the general agreement between the effect on steady-state levels and residual activity

also suggests that loss of stability is a major factor leading to loss-of-function for these variants.

Using thermodynamic stability calculations to predict pathogenic

mutations

An advantage of the structural stability calculations on missense variants that we present here is

that it may potentially bypass laborious laboratory testing and immediately provide a clinical

geneticist with an estimate of whether a particular MSH2 missense variant is pathogenic. The

currently employed clinical tools (e.g. CADD, SIFT, PolyPhen2, PROVEAN) provide sequence-

based predictions of whether a mutation is likely to be pathogenic [28–31]. While sequence-

based predictors have the clear advantage of being technically applicable to virtually all proteins,

the structural calculations utilize atomic details and thus allows not only more accurate predic-

tions, but may also enable mechanistic insights (e.g. our observation on ts mutations in the

DNA binding domain above) [32,33]. ΔΔG values for variants with half-life> 16 h are signifi-

cantly lower than those for variants with a half-life< 8 h (Fig 6A). Importantly, the biophysical
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calculations are able to separate the group of moderately stable proteins (half-life 8–16 h, Fig

6A), while the sequence-based predictors we tested considered those variants as equally patho-

genic as the rapidly degraded variants (Supporting information S6 Fig). To compare more

directly FoldX and the four sequence-based methods for their ability to distinguish known path-

ogenic and non-pathogenic variants [34], we repeated these calculations for CADD, SIFT, Poly-

Phen2, PROVEAN also (Supporting information S6 Fig). Interestingly, we found that while all

methods perform reasonably well, FoldX is substantially better at distinguishing pathogenic

from non-pathogenic variants (Fig 6B and Supporting information S6 Fig), demonstrating the

potential power of structure-based methods.

To corroborate our studies on MNNG sensitivity suggesting that the structural stability of

MSH2 variants correlate with MSH2 function, we analyzed the recent data of Houlleberghs

and co-workers [34]. ΔΔG values for the majority of the variants reported to be pathogenic by

Houlleberghs et al. are > 3 kcal/mol and would thus also have been predicted to be pathogenic

from the biophysical calculation (Fig 6A).

As a separate method for predicting the biological consequences of mutations, we also

turned to more detailed analyses of a multiple sequence alignment of MSH2 homologues. In

particular, we created a statistical model of such an alignment that both takes residue conserva-

tion into account, but also the non-trivial couplings that occur as a consequence of amino acid

co-variation (see Materials and Methods section). Such calculations are known to provide

accurate predictions of changes in stability [35] and have recently been used to assess pathoge-

nicity [36,37]. In contrast to the structure-based calculations, in which we examine whether

loss of stability is correlated with disease, these calculations do not assume or provide direct

insight into the molecular mechanisms that underlie the disease-causing variants.

To quantify the ability of FoldX, Rosetta, co-variation, and the more established sequence-

based methods (CADD, SIFT, PolyPhen2 and PROVEAN) to distinguish known pathogenic

and non-pathogenic variants [34], we used all these methods to assess the impact of known

neutral and Lynch-syndrome-causing mutations (Supporting information S6 Fig). In particu-

lar, we performed a “receiver-operating characteristic” analysis in which we compare the dif-

ferent methods’ ability to separate the two classes of mutations. Interestingly, we found that

while all methods perform reasonably well, the biophysical calculations (FoldX, Rosetta) and

co-variation are substantially better at distinguishing pathogenic from non-pathogenic vari-

ants (Fig 6B and Supporting information S6 Fig), demonstrating the potential power of struc-

ture-based methods. In line with recent findings [37] we also find that the co-variation

Fig 5. Functional analyses of MSH2 variants. (A) The MSH2 variants were analyzed for interaction with MSH6. Endogenous

MSH6 was immunoprecipitated and the precipitated material analyzed by SDS-PAGE and Western blotting using antibodies to

the 6His-tag on the MSH2 variants. Input samples (5%) were included as a control. α-tubulin served as a loading control. To

obtain sufficient amount of the MSH2 variants the cells were treated with the proteasome inhibitor bortezomib (BZ) for 6 hours

before harvest. See also supporting information S4 Fig. (B) The calculated thermodynamic stabilities of the test mutants (vertical

axis) are plotted towards categories of normal MSH6 interaction or reduced MSH6 interaction. The horizontal line marks the

median and the bars indicate the spread of the data points. *** indicates p < 0.001. (C) U2OS cells stably transfected with either

vector (upper row) or wild type 6His-tagged siRNA resistant MSH2 (lower row), were transfected with control siRNA or siRNA to

endogenous MSH2 and treated with either 0 or 100 nM MNNG. The surviving colonies were stained with crystal violet. (D) The

siRNA-mediated knock-down of endogenous MSH2 is shown by Western blotting using antibodies to MSH2 and the 6His-tag on

the recombinant (siRNA-resistant) MSH2. α-tubulin served as a loading control. Note that the recombinant variants are not

overexpressed compared to the endogenous MSH2 (E) The survival of the U2OS cells, stably transfected with siRNA to

endogenous MSH2, was monitored in response to increasing amounts of the alkylating agent MNNG. Note that cells containing

wild type MSH2 fail to survive, whereas the vector control cells survive. The tested MSH2 variants display an intermediate MNNG

sensitivity. The error bars indicate the S.E.M. (F) Estimate of the stability of MSH2 assuming that the wild type and MSH2-L187P

protein can be used as approximations for fully folded and non-folded protein, respectively. The red line shows the fit to the

thermodynamic model.

https://doi.org/10.1371/journal.pgen.1006739.g005
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analysis increases the predictive power over a simpler conservation analysis (Supporting infor-

mation S6 Fig).

Finally, we analyzed the predicted protein stabilities of MSH2 missense mutations found

the Exome Aggregation Consortium (ExAC) database [38]. Indeed this revealed that those

MSH2 variants that are found at a high frequency in the population, and therefore likely to be

benign, all display low ΔΔG values, indicating that these MSH2 proteins are stable and func-

tional (Fig 6C). We note also that while a few more destabilizing mutations are found with

much lower frequencies, we cannot assess whether these are due to prediction noise, whether

Fig 6. Pathogenicity predictions of MSH2 mutations. (A) Distributions of FoldX ΔΔG scores for MSH2 variants tested in this work with short (red),

intermediate (yellow), and long (light green) half-life (t½), common variants found in ExAC (dark green), known non-pathogenic (blue) and pathogenic (purple)

variants, and recently identified pathogenic variants (RIPV, magenta) [30]. Dots indicate the mean ΔΔG score for each group, and the bars indicate the

standard error of the mean. (B) Receiver operating characteristics (ROC) curves for the selected predictors of MSH2 variant pathogenicity: co-variation (red),

FoldX ΔΔG (yellow), Rosetta ΔΔG (green), PROVEAN (cyan), SIFT (blue), and PolyPhen2 (purple). Accuracy is assessed on known pathogenic and non-

pathogenic variants according to Houlleberghs et al., 2016. As the area under the curve (AUC) indicates, while all predictors show reasonable performance,

ΔΔG and co-variation provide considerably higher accuracy. (C) The distribution of FoldX ΔΔG scores vs. the allele frequency of MSH2 mutations found in the

Exome Aggregation Consortium (ExAC) database. Note that alleles that are found at a high frequency in the population, and are therefore unlikely to be

pathogenic, appear stable (display low ΔΔG values). The three horizontal lines correspond to quartiles. For further information, refer to S6 Fig.

https://doi.org/10.1371/journal.pgen.1006739.g006
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these individuals have an increased risk of Lynch syndrome, or whether these individuals have

other compensatory mutations in their genomes. Nevertheless, the finding that all common

variants are predicted to have little effect on stability supports the observation that computa-

tional ΔΔGs can help identify damaging mutations and should eventually be considered for

use in clinical practice in addressing the challenging issue of which rare mutations are patho-

genic and which are neutral [39].

In conclusion, our results demonstrate that biophysical calculations performed in silico can

predict the structural stability, function and turnover of proteins in cells, and allow insights

into the molecular mechanisms underlying disease. Such methods may therefore after further

testing perhaps be applied diagnostically to sort disease-causing missense mutations from

harmless genetic variations.

Discussion

Lynch syndrome is a common autosomal syndrome characterized by early onset neoplastic

lesions in a variety of tissues and microsatellite instability caused by heterozygous loss-of-func-

tion germline mutations in genes encoding components of the DNA mismatch repair (MMR)

system [8]. In eukaryotes, MMR is accomplished by the MutS heterodimers MSH2 and MSH6

or MSH2 and MSH3, which first recognize and bind mismatched base pairs and then recruit

downstream repair components [40]. Loss-of-function mutations in these components result

in a mutator phenotype, which consequently leads to cancer predisposition. In addition, mis-

match repair-defective tumors are often associated with resistance to conventional chemother-

apies, including temozolomide, 5-fluoruracil and cisplatin [8].

PQC systems root out abnormal or misfolded proteins [1,2], such as those encoded by mis-

sense mutations [5,6]. In general, these systems rely on molecular chaperones to either refold

the misfolded proteins or target them for degradation via autophagy or through the UPS [41–

47]. Degradation of proteins that are structurally perturbed, but still functional, has been

linked to disease, as in cystic fibrosis [25,48] and, as we show here for Lynch syndrome, which

should therefore be considered a protein folding disease.

At present, our understanding of what determines whether a misfolded protein is refolded

or degraded is limited, though presumably the structural stability of the substrate protein is

one crucial determinant. To formally test this requires, however, that biological and thermody-

namic stabilities of closely related proteins are determined in parallel. To accomplish this, we

chose the MSH2 protein as a model substrate for the following reasons: First, structural data

for MSH2 are available [11], thus allowing us to perform accurate thermodynamic stability

predictions. Second, the wild type MSH2 protein is stable and is not turned over as part of its

normal cellular function. Hence, any degradation that we may observe for MSH2 mutants can

be attributed solely to a reduced structural stability. Third, MSH2 is a rather large protein, and

is therefore likely to be highly dependent on temperature for correct folding [49], allowing us

to use this simple physical parameter to regulate the degree of misfolding.

Previous studies on yeast MSH2 mutants suggest that a high proportion of missense muta-

tions affect the steady-state protein levels [7,50]. Our studies on human MSH2 variants con-

firm these findings. Out of the 24 MSH2 variants studied here, we found that 18 displayed a

lower steady-state level and were more rapidly degraded than the wild type protein. For all

those variants, the protein levels could be increased by treating cells with proteasome inhibitor,

demonstrating that the turnover occurs via the UPS. As hypothesized, those mutations that

were predicted to be highly structurally destabilizing were also scored as being rapidly deg-

raded, whereas other structurally less destabilizing mutations at the same positions slowed pro-

tein turnover. These observations, combined with our finding of some variants that display a

In silico prediction of protein degradation and function

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006739 April 19, 2017 15 / 26

https://doi.org/10.1371/journal.pgen.1006739


temperature sensitive degradation (i.e. degraded at 37˚C, but stable at 29˚C), support that the

structural stability of the mutants is a primary determining factor for the degradation. This is

further reinforced by our finding that several of the variants that we had scored as highly struc-

turally unstable displayed a strongly reduced MSH6 binding. However, in all cases the struc-

tural destabilization inferred by the mutations appeared rather subtle, since all the tested

MSH2 variants localized, like wild type MSH2, to the nucleus, and none formed protein

aggregates.

Some MSH2 variants were rapidly degraded although the structure-based energy calcula-

tions only predicted them to be moderately destabilized. Thus, although we find a clear overall

relationship between the predicted change in thermodynamic stability and the cellular protein

degradation rates, the details of that relationship are likely more complex. For example, our

calculations focus upon the effect of the mutations on the global stability of the protein, but dif-

ferent regions of a protein can differ in local stabilities [24]. Thus, mutations with the same

overall destabilization, but located in different regions of the protein structure, might differen-

tially affect local stabilities. A more quantitative analysis would thus require knowledge about

any possible local unfolding as well as the mechanisms by which these are recognized by the

PQC systems. Our results are also reminiscent of the results of a study on the relationship

between destabilization and function in ubiquitin [51]. That study found that core mutations

that were only mildly destabilizing were fully functional, whereas mutations with intermediate

levels of destabilization had more varied functional effects.

Our finding that MSH2 variants are targets of the cellular PQC system prompts the ques-

tion as to the upstream components such as chaperones and E3 ubiquitin-protein ligases that

target the variants for degradation, and whether blocking degradation would be beneficiary. In

yeast cells, MSH2 is targeted by the E3 San1 [7], whereas in mammalian cells orphan wild type

MSH2 was proposed as a target for HDAC6-catalyzed ubiquitylation [20]. However, as of yet

no mammalian orthologue of San1 has been found [52], and as shown here, we did not observe

any change in MSH2 stability upon knock-down of HDAC6. Consequently, the E3 ubiquitin-

protein ligase responsible for targeting mutant variants of MSH2 in mammalian cells remains

to be identified, and possibly multiple E3s are involved.

With the rapid progress of genome sequencing, it is anticipated that genetic testing will

soon become a routine procedure. This will further the implementation of personalized medi-

cine but as a consequence the research community will be faced with the daunting task of sort-

ing disease causing genetic variants from harmless natural variants. Because of the rarity of

many pathogenic mutations it may be difficult to rely on purely statistical approaches to solve

this problem. To approach this issue, determining the structural stability of proteins in silico,

like we did here, could provide a powerful diagnostic tool, but may also aid clinicians in differ-

entiating treatment according to the activity of the mutant protein. We stress also that our

finding that changes in a specific molecular property (protein stability) correlate with pheno-

type (disease) suggests strongly a mechanistic model that would be hard to obtain using tradi-

tion methods for assessing pathogenicity. To develop this approach to a more clinically

relevant tool will, however, require both improved prediction accuracy for stability changes,

and an improved understanding of the relative importance of local vs. global unfolding and

the mechanisms by which these transiently misfolded structures are recognized by the PQC

system. We note, however, that in a direct comparison using known variants with known path-

ogenicity, our approach outperforms several currently employed methods. Further, our find-

ing that a co-variation approach and the stability predictions both reach roughly the same

prediction accuracy suggests that the co-variation calculations, at least in the case of the stud-

ied MSH2 variants, capture mostly stability effects. As these two methods have different
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limitations (e.g. availability of structural information vs. availability of a large number of

homologues sequences), we suggest that the two approaches will complement each other well.

Nevertheless there are some outliers, including the rapidly degraded D603N MSH2 variant,

which has a relatively low ΔΔG (1.0 kcal/mol), as well as A399K and L851P, which were pre-

dicted to be unstable (9.4 and 5.1 kcal/mol, respectively) but found experimentally to have

wild-type-like in vivo stability. Co-variation and PolyPhen2 both correctly predict the detri-

mental effect of D603N, indicating that conservation may in some cases be more informative

than biophysical changes, especially in cases of similar amino acids. A399K is predicted neutral

by co-variation; possibly the mutation could be accommodated by local reorganization, but

this remains difficult to model structurally. All methods used here predict L851P to be detri-

mental, in contrast to experimental findings, underlining the difficulty of such predictions,

perhaps especially in flexible regions of the protein. Detailed scores for each predictor and vari-

ant can be found in the Supporting Information (Supporting information S3 File).

In conclusion, our results show a logical, but until now unproven, correlation between pre-

dicted structural protein instability and protein turnover. In turn this may provide clinicians

with a novel tool to score the severity of missense mutations of uncertain clinical significance.

In case of Lynch syndrome, this information is highly relevant, since an early diagnosis can

strongly increase survival [9].

Materials and methods

Buffers

Buffer A: 50 mM Tris/HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.5% NP-40, 1 mM PMSF

and Complete protease inhibitors (Roche). Buffer B: 50 mM sodium phosphate pH 7.4, 50 mM

NaCl, 0.5% NP-40, 10 mM imidazole, 10 mM β-mercaptoethanol, 1 mM PMSF and Complete

protease inhibitors (without EDTA) (Roche). PBS: 10 mM Na2HPO4, 1.8 mM KH2PO4, 137

mM NaCl, 3 mM KCl, pH 7.4.

Plasmids

For expression of MSH2, full-length wild type human MSH2 cDNA was inserted into

pcDNA-DEST40 (Invitrogen). An N-terminal RGS6xHis-tag was inserted upstream of an SRS

linker peptide, before MSH2 Met1. All point mutants were generated by Genscript. Select

MSH2 mutants were cloned into pcDNA5/FRT (Invitrogen) for stable integration into an

U2OS cell line harboring FLP recombination sites (kindly provided by Dr. Jakob Nilsson, Uni-

versity of Copenhagen).

Cell culture

U2OS cells were maintained in Dulbecco’s Modified Eagle medium (DMEM) supplemented

with 10% fetal-calf serum (Invitrogen), 5000 IU/mL penicillin, 5 mg/mL streptomycin and 2

mM glutamine at 37˚C in a humidified atmosphere containing 5% CO2. Stable MSH2 trans-

fectants were generated using the FlpIn system (Invitrogen) using 50 μg/mL Hygromycin B

(Invitrogen) and 50 μg/mL Zeocin (Invitrogen) for selection.

Electrophoresis and blotting

Proteins were separated on 7 cm x 8 cm 8% acrylamide gels and subsequently transferred to

0.2 μm nitrocellulose membranes. Membranes were blocked in PBS containing 5% fat-free

milk powder and 0.1% Tween-20. Membranes were then probed with the indicated antibodies

overnight.
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Antibodies and their sources were: anti-human MSH2 (CalBiochem), anti-human MSH6

(BD Biosciences), anti-human MSH3 (Abcam), anti-RGSHis (Qiagen), anti-HDAC6 (Cell Sig-

naling Technology), anti-tubulin (Sigma) and anti-β-actin (Sigma). All secondary antibodies

were purchased from DAKO.

Transfections

For DNA U2OS cells were transfected with FugeneHD (Promega) at a DNA:FugeneHD ratio

of 1:3.5, according to the manufacturer’s instructions. Before transfection, media was replaced

with OptiMEM (Life Technologies), and cells were subsequently incubated with the transfec-

tion mix for 4 hours. For transfection in 6-well plates, 1 μg of DNA pr. well was used and

scaled accordingly for different well sizes.

For siRNA U2OS cells were reverse transfected with 50 nM On-target Smart Pool siRNA to

MSH2 (Dharmacon) using Lipofectamine RNAiMAX (Invitrogen). The mix was then added

to newly-seeded cells and medium replaced with complete DMEM after 24 hours. Experiments

were performed 48 to 72 hours after transfection.

Co-precipitation experiments

For binding studies a confluent dish of transfected U2OS cells was lysed in 600 μL buffer A on

ice. Cell extracts were cleared by centrifugation at 15000 g for 20 minutes at 4˚C and 30 μL and

was taken for input. The remaining lysate was then incubated with 5 μL of MSH6 antibody

(BD Biosciences) for 2 hours at 4˚C before adding Protein G Sepharose (GE Healthcare). After

further incubation for 2 hours at 4˚C under gentle agitation, the beads were washed by centri-

fugation 4 times in buffer A. Bound proteins were eluted in SDS sample buffer.

Protein degradation experiments

The degradation of proteins was followed in cultures incubated with 10 μg/mL cycloheximide

in serum-free DMEM. Bortezomib (LC Laboratories) was used at 25 μM.

Cell survival assays

Stable cell lines were reverse transfected with siRNA against endogenous MSH2 according to

the above protocol. Approximately 72 hours after transfection, cells were trypsinized, counted,

and seeded into 6-well plates at 500 cells/well. After 24 hours, the media was replaced with 2

mL complete DMEM containing 20 μM O6-BG (Sigma) for 1 hour. Subsequently, 1 mL of

complete DMEM containing 3x the desired final concentration of MMNG (Sigma) was added

to the 2 mL O6-BG-containing media. After 9 days the cells were stained with crystal violet

and the colonies were counted.

In silico saturation mutagenesis with FoldX

The FoldX energy function version 3.1 was used to estimate the free-energy change upon

mutations of MSH2 [12]. FoldX calculations were carried out for each of the monomer struc-

tures included in the PDB entry 2O8E [11] to assess the reproducibility of the results, and the

average is reported here. The RepairPDB function of FoldX was first applied to the wild type

structures. Structures for saturation mutagenesis were generated using an in-house Python

program that allows for the introduction of all 19 possible point mutants at each position of

the protein using multithreading calculations. The BuildModel function of FoldX was

employed and five independent runs were carried out and then averaged. The typical predic-

tion error of FoldX is about 0.8 kcal/mol [53].
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In silico saturation mutagenesis with Rosetta

We used the Rosetta version with GitHub SHA-1 6922a68c56c0a3c5f64570c55097ba5-

d5439e22c (Nov 2016) with the ΔΔG protocol 13 with local optimization [13] and the

Talaris2014 energy function [54]. Calculations are based on a minimized structure of the PDB

entry 2O8E, as described in the published ΔΔG protocol [13], and constrained not to diverge

more than 0.5 Å from the backbone in the crystal structure. The average energy of the lowest 3

out of 15 models for each possible mutation is reported here.

Co-variation-based prediction of pathogenic mutations

As an additional method for predicting pathogenicity of missense mutations, we turned to the

statistical analysis of an MSH2 multiple sequence alignment. More specifically, we built a

global statistical model [55] of the multiple sequence alignment to predict the likelihood of any

given MSH2 sequence. To emulate a change in thermodynamic stability of a given mutant, we

calculate the difference in log-likelihood between the wild-type and the mutant variant. This

global statistical approach, as opposed to local, allows us to exploit all sequence constraints

encoded by evolution, regardless of availability of high-resolution structural data or putative

molecular mechanism. Thus, for example, residues critical for interaction interfaces will score

similar to destabilizing mutations or changes to catalytic residues. Similar methods are known

to provide accurate predictions of ΔΔG [35] and have recently been applied successfully to

identify a range of known disease-related mutations [36].

Imaging

Cell imaging was performed in thin-bottomed black 96-well plates. Microscopy was performed

capturing 12 fields/well in an InCell2200 (GE Healthcare). Filters were DAPI (ex 390 nm, em

432 nm) and TexasRed (ex 575 nm, em 620 nm). Images were analyzed with the InCell Devel-

oper Toolbox (GE Healthcare). Nuclear segmentation and cellular segmentation were

obtained using “object segmentation” and non-transfected cells were excluded, based on the

intensity levels in the non-transfected controls. To analyze the fraction of intensity in the

nucleus, the total intensity of the red channel in each cell was measured as well as the total

intensity of the nuclear area in the red channel, and the ratio between the two determined.

Mass spectrometry

For mass spectrometry, stable U2OS cell lines expressing wild type MSH2, L187P and a vector

control, were grown to confluency in four 15-cm dishes per cell line. Cells were washed in

PBS, and subsequently scraped off the dish in 3 mL of PBS. The cells were harvested by centri-

fugation and lysed in 1 mL of buffer B for 20 minutes on ice. The lysates were cleared by centri-

fugation (13000 g, 30 min.), and the supernatants transferred to tubes containing 20 μL

TALON metal affinity resin (Clontech). Lysates were incubated for 2 hours at 4˚C, after which

the beads were washed 4 times in buffer B, followed by addition of 25 μL SDS sample buffer.

Samples were prepared in quadruplicates. 17 μL of each sample elution was fractionated by

SDS-PAGE (Novex NuPAGE Bis-Tris/MOPS 10% acrylamide) before staining with Coomas-

sie blue, with an estimated protein yield of ~20 μg per lane. Each lane was excised as a single

‘slice’, and tryptic peptides extracted by in gel digestion (0.5μg per slice). Peptide samples were

analyzed by LC-MS/MS on a Q Exactive mass spectrometer (Thermo Scientific) coupled to an

EASY-nLC 1000 liquid chromatography system (Thermo Scientific) via an EASY-Spray ion

source (Thermo Scientific). Peptides were fractionated on a 75 μm x 500 mm EASY-Spray col-

umn (Thermo Scientific) over 150 minutes. Precursor ion full scan spectra were acquired over
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(m/z 300 to 1,800) with a resolution of 70,000 at m/z 400 (target value of 1,000,000 ions, maxi-

mum injection time 20 ms). Up to ten data dependent MS2 spectra were acquired with a reso-

lution of 17,500 at m/z 400 (target value of 500,000 ions, maximum injection time 60 ms). Ions

with unassigned charge state, and singly or highly (>8) charged ions were rejected. Intensity

threshold was set to 2.1 x 104 units. Peptide match was set to preferred, and dynamic exclusion

option was enabled (exclusion duration 40 s). Raw MS data files were processed using Max-

Quant software (version 1.5.2.8) and searched against UniProtKB human proteome (canonical

and isoform sequences). Carbamidomethyl (C) was set as fixed modification and variable

modification of acetyl (protein N-term), and oxidized (M) were selected. MaxQuant enzyme

specificity was set to trypsin. Lysine and arginine were selected as special amino acid and a

maximum number of three missed cleavages were allowed. A minimum peptide length was set

to seven residues and a maximum peptide mass was 5,000 Da. A false discovery rate of 1% was

set as a threshold at both protein and peptide level, and a mass deviation of 6 parts per million

was set for main search and 0.5 Da for MS2 peaks. The match between runs option was

selected using the matching and alignment time windows of 0.7 and 20 minutes respectively.

Raw intensity values were manually normalized by median ratio of the proteins detected in all

samples, and only proteins with four intensities reported in a single set of quadruplicates was

carried forward. Zero intensity values were replaced in Persues v 1.5.1.6 (www.biochem.mpg.

de/5111810/perseus) from a normal distribution of data based on the input intensities with

width and downshift parameters set to default (0.3 and 1.8). Significantly enriched proteins

(interactors) were identified by two samples t-test with permutation-based FDR = 0.05 and

S0 = 0.2. These are shown as red (103 proteins) among the background of 1483 proteins not

satisfying these criteria (see Supporting information S5B Fig).

Supporting information

S1 Fig. MSH2 variants are unstable and not targets of HDAC6. (A) The steady-state level of

the indicated wild type (WT) or MSH2 mutants expressed as CFP fusion proteins in U2OS

cells were determined using SDS-PAGE and Western blotting with antibodies to GFP (detect-

ing the CFP-tag on MSH2) in cultures that were either treated (+) or untreated (-) with borte-

zomib for 10 hours. α-tubulin served as a loading control. (B) The steady-state level of the

indicated wild type (WT) or MSH2 variants from the OMIM database expressed in U2OS cells

was determined using SDS-PAGE and Western blotting with antibodies to 6His-tag on MSH2

in cultures that were either untreated or treated with the proteasome inhibitor bortezomib

(BZ) for 10 hours. β-actin served as a loading control. (C) The steady-state level of the indi-

cated wild type (WT) or MSH2 mutants expressed in U2OS cells were determined using

SDS-PAGE and Western blotting with antibodies to 6His-tag on MSH2 in cultures that were

transfected with either control siRNA (-) or siRNA specific for HDAC6 (+) for 48 hours. α-

tubulin served as a loading control. Knock-down efficiency was determined by blotting for

HDAC6.

(TIF)

S2 Fig. MSH2 quality control is independent of DNA damage and expression level. (A) The

amount of wild type MSH2 in U2OS cells was followed in cultures treated with the translation

inhibitor cycloheximide (CHX) or the alkylating agent MNNG for 0 or 24 hours. α-tubulin

served as a loading control. (B) The degradation of overexpressed wild type MSH2 (left panel)

or endogenous MSH2 (right panel) was followed in U2OS cells at 37˚C after treating with

cycloheximide (CHX) for 0, 8, 16 and 24 hours. α-tubulin served as a loading control. The

half-life (t½) was determined by densitometry and is given below along with the standard devi-

ation (C) The expression level of stably transfected MSH2 variants was determined by blotting
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using antibodies to MSH2 and to the 6His-tag on the recombinant MSH2 variants. β-actin

served as a loading control. Note that the recombinant MSH2 variants are not overexpressed

compared to the endogenous MSH2 protein. (D) The degradation of the MSH2 variants stably

transfected in U2OS cells was followed after treating with cycloheximide (CHX) for 0, 8, 16

and 24 hours. β-actin served as a loading control.

(TIF)

S3 Fig. The ubiquitin-proteasome system appears normal at 29˚C. The cellular levels of ubi-

quitin-protein conjugates and 26S proteasomes was compared between U2OS cells grown at

29˚C and at 37˚C by blotting for ubiquitin (Ub), the 19S regulatory complex subunit Rpn1 and

the 20S proteasome α-subunits. α-tubulin served as a loading control.

(TIF)

S4 Fig. The MSH2 subcellular localization is not affected by the introduced missense muta-

tions. (A) The subcellular localization of wild type MSH2 (left panels) and, as an example of a

MSH2 mutant, C199R (right panels) were determined using antibodies to the 6His-tagged

MSH2. Hoechst staining was used to mark the nucleus. (B) Quantification of nuclear MSH2

localization determined from stains as shown in (a) for wild type (WT) MSH2 and the selected

MSH2 mutants. Between 100 and 1000 cells were included for each quantification. The error

bars indicate the standard deviation.

(TIF)

S5 Fig. Mass spectrometry analysis of the wild type and mutant MSH2 interactomes. (A)

U2OS cells expressing vector, 6His-tagged wild type MSH2 or 6His-tagged MSH2-L187P were

used for precipitation experiments with metal affinity beads in quadruplicates (only one of

four experiments is shown). The precipitated material was separated by SDS-PAGE and the

gel stained with Coomassie Brilliant Blue (CBB). (B) Scatter plot showing the 1586 proteins

that were identified and quantified in the three sets of quadruplicates (as described in materials

and methods). Axes are log2 values of the protein intensity ratio with control purifications of

wild type MSH2 purifications (x-axis) and L187P MSH2 purification (y-axis). Points are calcu-

lated from the ratio of the arithmetic mean of the four intensities from each quadruplicate

group. Density of data in the chart is represented by color from cyan (most dense) to green

(least). Line representing y = x (broken red), and MSH2, MSH3 and MSH6 proteins are indi-

cated. (C) Column chart showing average log2 wild type/L187P ratios for all proteins together

(‘All proteins’, n = 1586), or for the individual MSH proteins (as indicated). Each replicate was

used to produce a single ratio by comparison with the other group, providing four ratios.

Error bars represent standard deviation of these ratios for MSH2, MSH3 and MSH6 proteins,

or the average standard deviation of all proteins (‘All proteins’). p-value of the two samples t-

test comparing difference between wt and L187P MSH2 purifications is shown above each col-

umn. (D) Metal affinity co-precipitation of 6His-MSH2 and 6His-MSH2-L187P. The precipi-

tated material was analyzed by SDS-PAGE and Western blotting using antibodies to the 6His-

tag (on MSH2), MSH3 and MSH6. Input samples (5%) were included as a control. α-tubulin

served as a loading control.

(TIF)

S6 Fig. Comparison of FoldX calculations with other disease predictors. (A) Comparison of

the predicted pathogenicity of MSH2 variants by ΔΔG and PolyPhen2 (left), and ΔΔG and

PROVEAN (right). The variants are colored by dataset: short half-life (t½, red), intermediate

(yellow), and long t½ (light green) for variants tested in this work; common variants as

observed in ExAC (Lek 2016) (dark green, see also Fig 6C in the main manuscript), known

non-pathogenic (blue) and pathogenic (purple) MSH2 variants from the literature, and
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recently identified pathogenic variants (RIPV, magenta) according to Houlleberghs et al.,
2016. (B) Score distributions for the sequence-based predictors we tested. For SIFT and PRO-

VEAN, the default thresholds for pathogenic mutations (<log(0.05) for SIFT,<-2.5 for PRO-

VEAN) are indicated with a horizontal line. Note that low scores in the SIFT plot indicate

putative pathogenic mutations, while high scores in the PolyPhen2, PROVEAN, Rosetta,

CADD, and co-variation plots are considered pathogenic. All predictors give correct trends,

with low half-life variants scoring worse on average than intermediate and long half-life MSH2

variants. However, neither predictor separates these groups as well as FoldX ΔΔGs (Fig 6A).

(C) Receiver operating characteristic (ROC) curves for all methods used in this work, plus a

simple linear model of predicting stability changes from a multiple sequence alignment (MSA)

of MSH2 (green). (D) Leave-one-out cross validation was performed to assess the stability and

predictive power of pathogenicity prediction. The plot shows accuracy of prediction of the

left-out mutation across the leave-one-out procedure for each method. As in the ROC curve in

Fig 6B, co-variation and the biophysical models Rosetta and FoldX perform better than the

more established sequence-based predictors PROVEAN, SIFT, CADD, and PolyPhen2.

(TIF)

S1 File. Saturation mutagenesis dataset as spreadsheet.

(XLSX)

S2 File. Saturation mutagenesis dataset as heatmap.

(PDF)

S3 File. Comparison of predictions for the selected MSH2 variants.

(XLSX)

S4 File. Mass spectrometry dataset.

(XLSX)
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