287 research outputs found
Research Activities Report for the Project:living Aquatic Resources - management and knowledge base
Three-Body Halos. II. from Two- to Three-Body Asymptotics
The large distance behavior of weakly bound three-body systems is
investigated. The Schr\"{o}dinger equation and the Faddeev equations are
reformulated by an expansion in eigenfunctions of the angular part of a
corresponding operator. The resulting coupled set of effective radial equations
are then derived. Both two- and three-body asymptotic behavior are possible and
their relative importance is studied for systems where subsystems may be bound.
The system of two nucleons outside a core is studied numerically in detail and
the character of possible halo structure is pointed out and investigated.Comment: 16 pages, compressed and uuencoded PosrScript file, IFA-94/3
Relativistic Gauge Conditions in Quantum Cosmology
This paper studies the quantization of the electromagnetic field on a flat
Euclidean background with boundaries. One-loop scaling factors are evaluated
for the one-boundary and two-boundary backgrounds. The mode-by-mode analysis of
Faddeev-Popov quantum amplitudes is performed by using zeta-function
regularization, and is compared with the space-time covariant evaluation of the
same amplitudes. It is shown that a particular gauge condition exists for which
the corresponding operator matrix acting on gauge modes is in diagonal form
from the beginning. Moreover, various relativistic gauge conditions are studied
in detail, to investigate the gauge invariance of the perturbative quantum
theory.Comment: 26 pages, plain TeX, no figure
Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates
Logarithmic corrections to the extremal black hole entropy can be computed
purely in terms of the low energy data -- the spectrum of massless fields and
their interaction. The demand of reproducing these corrections provides a
strong constraint on any microscopic theory of quantum gravity that attempts to
explain the black hole entropy. Using quantum entropy function formalism we
compute logarithmic corrections to the entropy of half BPS black holes in N=2
supersymmetric string theories. Our results allow us to test various proposals
for the measure in the OSV formula, and we find agreement with the measure
proposed by Denef and Moore if we assume their result to be valid at weak
topological string coupling. Our analysis also gives the logarithmic
corrections to the entropy of extremal Reissner-Nordstrom black holes in
ordinary Einstein-Maxwell theory.Comment: LaTeX file, 66 page
Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions
We compute logarithmic corrections to the entropy of rotating extremal black
holes using quantum entropy function i.e. Euclidean quantum gravity approach.
Our analysis includes five dimensional supersymmetric BMPV black holes in type
IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL
models, and also non-supersymmetric extremal Kerr black hole and slowly
rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black
holes our results are in perfect agreement with the microscopic results derived
from string theory. In particular we reproduce correctly the dependence of the
logarithmic corrections on the number of U(1) gauge fields in the theory, and
on the angular momentum carried by the black hole in different scaling limits.
We also explain the shortcomings of the Cardy limit in explaining the
logarithmic corrections in the limit in which the (super)gravity description of
these black holes becomes a valid approximation. For non-supersymmetric
extremal black holes, e.g. for the extremal Kerr black hole in four dimensions,
our result provides a stringent testing ground for any microscopic explanation
of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation
between boundary condition and choice of ensemble, modified analysis for
slowly rotating black holes, all results remain unchanged, typos corrected;
v3: minor additions and correction
Nonperturbative path integral of 2d dilaton gravity and two-loop effects from scalar matter
Performing an nonperturbative path integral for the geometric part of a large
class of 2d theories without kinetic term for the dilaton field, the quantum
effects from scalar matter fields are treated as a perturbation. When
integrated out to two-loops they yield a correction to the Polyakov term which
is still exact in the geometric part. Interestingly enough the effective action
only experiences a renormalization of the dilaton potential.Comment: 15 page
Fine Structure of Avalanches in the Abelian Sandpile Model
We study the two-dimensional Abelian Sandpile Model on a square lattice of
linear size L. We introduce the notion of avalanche's fine structure and
compare the behavior of avalanches and waves of toppling. We show that
according to the degree of complexity in the fine structure of avalanches,
which is a direct consequence of the intricate superposition of the boundaries
of successive waves, avalanches fall into two different categories. We propose
scaling ans\"{a}tz for these avalanche types and verify them numerically. We
find that while the first type of avalanches has a simple scaling behavior, the
second (complex) type is characterized by an avalanche-size dependent scaling
exponent. This provides a framework within which one can understand the failure
of a consistent scaling behavior in this model.Comment: 10 page
Self-energy and Self-force in the Space-time of a Thick Cosmic String
We calculate the self-energy and self-force for an electrically charged
particle at rest in the background of Gott-Hiscock cosmic string space-time. We
found the general expression for the self-energy which is expressed in terms of
the matrix of the scattering problem. The self-energy continuously falls
down outward from the string's center with maximum at the origin of the string.
The self-force is repulsive for an arbitrary position of the particle. It tends
to zero in the string's center and also far from the string and it has a
maximum value at the string's surface. The plots of the numerical calculations
of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe
Renormalization group approach to an Abelian sandpile model on planar lattices
One important step in the renormalization group (RG) approach to a lattice
sandpile model is the exact enumeration of all possible toppling processes of
sandpile dynamics inside a cell for RG transformations. Here we propose a
computer algorithm to carry out such exact enumeration for cells of planar
lattices in RG approach to Bak-Tang-Wiesenfeld sandpile model [Phys. Rev. Lett.
{\bf 59}, 381 (1987)] and consider both the reduced-high RG equations proposed
by Pietronero, Vespignani, and Zapperi (PVZ) [Phys. Rev. Lett. {\bf 72}, 1690
(1994)] and the real-height RG equations proposed by Ivashkevich [Phys. Rev.
Lett. {\bf 76}, 3368 (1996)]. Using this algorithm we are able to carry out RG
transformations more quickly with large cell size, e.g. cell for
the square (sq) lattice in PVZ RG equations, which is the largest cell size at
the present, and find some mistakes in a previous paper [Phys. Rev. E {\bf 51},
1711 (1995)]. For sq and plane triangular (pt) lattices, we obtain the only
attractive fixed point for each lattice and calculate the avalanche exponent
and the dynamical exponent . Our results suggest that the increase of
the cell size in the PVZ RG transformation does not lead to more accurate
results. The implication of such result is discussed.Comment: 29 pages, 6 figure
The Origin of Space-Time as Symmetry Breaking in String Theory
Physics in the neighbourhood of a space-time metric singularity is described
by a world-sheet topological gauge field theory which can be represented as a
twisted superconformal Wess-Zumino model with a bosonic symmetry. The measurable -hair associated with the
singularity is associated with Wilson loop integrals around gauge defects. The
breaking of
is associated with expectation values for open Wilson lines that
make the metric non-singular away from the singularity. This symmetry breaking
is accompanied by massless discrete `tachyon' states that appear as leg poles
in -matrix elements. The triviality of the -matrix in the high-energy
limit of the string model, after renormalisation by the leg pole factors,
is due to the restoration of double -symmetry at the singularity.Comment: 13 page
- …
