We compute logarithmic corrections to the entropy of rotating extremal black
holes using quantum entropy function i.e. Euclidean quantum gravity approach.
Our analysis includes five dimensional supersymmetric BMPV black holes in type
IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL
models, and also non-supersymmetric extremal Kerr black hole and slowly
rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black
holes our results are in perfect agreement with the microscopic results derived
from string theory. In particular we reproduce correctly the dependence of the
logarithmic corrections on the number of U(1) gauge fields in the theory, and
on the angular momentum carried by the black hole in different scaling limits.
We also explain the shortcomings of the Cardy limit in explaining the
logarithmic corrections in the limit in which the (super)gravity description of
these black holes becomes a valid approximation. For non-supersymmetric
extremal black holes, e.g. for the extremal Kerr black hole in four dimensions,
our result provides a stringent testing ground for any microscopic explanation
of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation
between boundary condition and choice of ensemble, modified analysis for
slowly rotating black holes, all results remain unchanged, typos corrected;
v3: minor additions and correction