228 research outputs found
Undirected Graphs of Entanglement Two
Entanglement is a complexity measure of directed graphs that origins in fixed
point theory. This measure has shown its use in designing efficient algorithms
to verify logical properties of transition systems. We are interested in the
problem of deciding whether a graph has entanglement at most k. As this measure
is defined by means of games, game theoretic ideas naturally lead to design
polynomial algorithms that, for fixed k, decide the problem. Known
characterizations of directed graphs of entanglement at most 1 lead, for k = 1,
to design even faster algorithms. In this paper we present an explicit
characterization of undirected graphs of entanglement at most 2. With such a
characterization at hand, we devise a linear time algorithm to decide whether
an undirected graph has this property
New Deterministic Algorithms for Solving Parity Games
We study parity games in which one of the two players controls only a small
number of nodes and the other player controls the other nodes of the
game. Our main result is a fixed-parameter algorithm that solves bipartite
parity games in time , and general parity games in
time , where is the number of distinct
priorities and is the number of edges. For all games with this
improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and
Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved
deterministic algorithm for graphs with small average degree
The Complexity of Admissibility in Omega-Regular Games
Iterated admissibility is a well-known and important concept in classical
game theory, e.g. to determine rational behaviors in multi-player matrix games.
As recently shown by Berwanger, this concept can be soundly extended to
infinite games played on graphs with omega-regular objectives. In this paper,
we study the algorithmic properties of this concept for such games. We settle
the exact complexity of natural decision problems on the set of strategies that
survive iterated elimination of dominated strategies. As a byproduct of our
construction, we obtain automata which recognize all the possible outcomes of
such strategies
The Eyes of the Beholder: does responsibility for the lack of quality screenplays really lie at the door of inadequately trained screenwriters?
The relative lack of success for British films in the marketplace is often cited as being rooted in the lack of quality screenplays. As the primary strategic body for film in Britain, the UK Film Council subscribes to this broad analysis and has identified training as one of the key strategies for overcoming this weakness. In this article, I question this assumption and examine to what extent the decision-makers, and the processes of decision-making, themselves are a problem in the development of talent and quality British films
Challenges for Efficient Query Evaluation on Structured Probabilistic Data
Query answering over probabilistic data is an important task but is generally
intractable. However, a new approach for this problem has recently been
proposed, based on structural decompositions of input databases, following,
e.g., tree decompositions. This paper presents a vision for a database
management system for probabilistic data built following this structural
approach. We review our existing and ongoing work on this topic and highlight
many theoretical and practical challenges that remain to be addressed.Comment: 9 pages, 1 figure, 23 references. Accepted for publication at SUM
201
Qualitative Analysis of Partially-observable Markov Decision Processes
We study observation-based strategies for partially-observable Markov
decision processes (POMDPs) with omega-regular objectives. An observation-based
strategy relies on partial information about the history of a play, namely, on
the past sequence of observations. We consider the qualitative analysis
problem: given a POMDP with an omega-regular objective, whether there is an
observation-based strategy to achieve the objective with probability~1
(almost-sure winning), or with positive probability (positive winning). Our
main results are twofold. First, we present a complete picture of the
computational complexity of the qualitative analysis of POMDP s with parity
objectives (a canonical form to express omega-regular objectives) and its
subclasses. Our contribution consists in establishing several upper and lower
bounds that were not known in literature. Second, we present optimal bounds
(matching upper and lower bounds) on the memory required by pure and randomized
observation-based strategies for the qualitative analysis of POMDP s with
parity objectives and its subclasses
Are there any good digraph width measures?
Several different measures for digraph width have appeared in the last few
years. However, none of them shares all the "nice" properties of treewidth:
First, being \emph{algorithmically useful} i.e. admitting polynomial-time
algorithms for all \MS1-definable problems on digraphs of bounded width. And,
second, having nice \emph{structural properties} i.e. being monotone under
taking subdigraphs and some form of arc contractions. As for the former,
(undirected) \MS1 seems to be the least common denominator of all reasonably
expressive logical languages on digraphs that can speak about the edge/arc
relation on the vertex set.The latter property is a necessary condition for a
width measure to be characterizable by some version of the cops-and-robber game
characterizing the ordinary treewidth. Our main result is that \emph{any
reasonable} algorithmically useful and structurally nice digraph measure cannot
be substantially different from the treewidth of the underlying undirected
graph. Moreover, we introduce \emph{directed topological minors} and argue that
they are the weakest useful notion of minors for digraphs
Games on graphs with a public signal monitoring
We study pure Nash equilibria in games on graphs with an imperfect monitoring
based on a public signal. In such games, deviations and players responsible for
those deviations can be hard to detect and track. We propose a generic
epistemic game abstraction, which conveniently allows to represent the
knowledge of the players about these deviations, and give a characterization of
Nash equilibria in terms of winning strategies in the abstraction. We then use
the abstraction to develop algorithms for some payoff functions.Comment: 28 page
Symmetric Strategy Improvement
Symmetry is inherent in the definition of most of the two-player zero-sum
games, including parity, mean-payoff, and discounted-payoff games. It is
therefore quite surprising that no symmetric analysis techniques for these
games exist. We develop a novel symmetric strategy improvement algorithm where,
in each iteration, the strategies of both players are improved simultaneously.
We show that symmetric strategy improvement defies Friedmann's traps, which
shook the belief in the potential of classic strategy improvement to be
polynomial
Antichain Algorithms for Finite Automata
We present a general theory that exploits simulation relations on transition systems to obtain antichain algorithms for solving the reachability and repeated reachability problems. Antichains are more succinct than the sets of states manipulated by the traditional fixpoint algorithms. The theory justifies the correctness of the antichain algorithms, and applications such as the universality problem for finite automata illustrate efficiency improvements. Finally, we show that new and provably better antichain algorithms can be obtained for the emptiness problem of alternating automata over finite and infinite words
- …